
Real-Time Detection of Robotic Traffic in Online Advertising

Anand Muralidhar, Sharad Chitlangia, Rajat Agarwal, Muneeb Ahmed
Amazon

{anandmur, chitshar, agrajat, munbahmd}@amazon.com

Abstract

Detecting robotic traffic at scale on online ads needs an
approach that is scalable, comprehensive, precise, and can
rapidly respond to changing traffic patterns. In this paper we
describe SLIDR or SLIce-Level Detection of Robots, a real-
time deep neural network model trained with weak supervi-
sion to identify invalid clicks on online ads. We ensure fair-
ness across different traffic slices by formulating a convex
optimization problem that allows SLIDR to achieve optimal
performance on individual traffic slices with a budget on over-
all false positives. SLIDR has been deployed since 2021 and
safeguards advertiser campaigns on Amazon against robots
clicking on ads on the e-commerce site. We describe some
of the important lessons learned by deploying SLIDR that in-
clude guardrails that prevent updates of anomalous models
and disaster recovery mechanisms to mitigate or correct deci-
sions made by a faulty model.

1 Introduction
Online advertising has seen significant adoption among sell-
ers and has both cost-per-click (CPC) and cost-per-mille
(CPM) campaigns. In the former an advertiser is charged for
a click on an ad while in the later the advertiser is charged
for showing 1000 ad impressions. In this paper we are con-
cerned with CPC campaigns that have attracted the atten-
tion of services that build sophisticated bots to click on ads.
There are many motivations for designing bots to click on
online ads like improving the performance of a product list-
ing by boosting its search rankings, depleting a competitor’s
ad budget, modifying the CPC for an ad campaign, etc. We
are concerned with robotic traffic that is fraudulent or non-
human, with no value to advertisers. There are other types
of robotic traffic that involve crawlers and maybe of a be-
nign nature but are not considered here. The goal of robot
detection is to build algorithms that ensure advertisers are
not charged for invalid activity, and human clicks are not in-
validated, with all decisions made as real-time as possible to
cause minimal disruption to advertiser experience.

There have been attempts to solve this problem by creat-
ing lists of robotic entities like IP-addresses or by generating
signatures of bots based on forensic analysis of the trans-
port layer handshake between server and client. However

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such static lists might have low precision since an IP ad-
dress might see a mixture of robotic and human traffic over
a period of time. Also static lists have low recall towards
emerging attacks from a new bot or when a bot evolves its
signature. Instead we focus on building a solution that con-
siders every ad click in real-time and decides if the click
was made by a human or robot. This in-house approach al-
lows us to build rich features to distinguish robots from hu-
mans and also utilize insights from customers behavior on
the e-commerce site to generate signals. However we cannot
design simple rules or heuristics with these features to de-
tect bots due to the sophistication of bots, adversarial nature
of problem, evolving traffic patterns, and a need to control
business metrics. We adopt a ML-centric approach towards
detecting robotic traffic since it allows discovery of new bot
signatures, ability to tune operating points of algorithms, and
extensibility in terms of adding new features. However there
are a few challenges towards building ML models:

Lack of ground truth We have a large volume of ad clicks
in online advertising but are unable to confidently label a
click as robotic or human. Hence we need to identify proxy
labels based on actions that are more likely to be performed
by humans than robots.

Balance revenue and recall Any click that we incorrectly
mark as robotic leads to a loss of revenue for the company
while any click that we mark as human could be a potential
bot that has evaded detection. We address this tension by
calibrating ML models for a chosen false positive rate.

Equal protection across traffic slices Online ads are dis-
played on many traffic slices across a variety of devices and
ad placements on the e-commerce site. The model should
ensure fairness and offer similar protection across all slices
of traffic. We formulate this as an offline convex optimiza-
tion problem to determine the operating points of the model
for each traffic slice.

Evolving bots, need fast reaction Bots are rapidly evolv-
ing with increase in their sophistication and the model needs
to continuously adapt along with traffic patterns. The model
should also quickly react to egregious robotic attacks that
have the potential to deplete budgets of small or medium-
sized ad campaigns. We have designed features that allow



the model to be nimble and deployed it for real-time detec-
tion of robotic ad clicks.

In this paper we describe SLIDR or SLIce-Level
Detection of Robots, a system based on a deep neural net-
work that strives to meet the challenges described above and
has been in continuous operation on advertisements shown
on Amazon since 2021. The main contributions in the paper
are:

• A framework for building a ML model to detect robots
that click on ads in real-time, see Section 2.

• A formulation of calibration across traffic slices as a con-
vex optimization problem, see Section 3.

• Lessons learned by deploying the system that include
guardrails and disaster recovery mechanisms, see Sec-
tion 5.

Section 4 evaluates the model’s metrics under different sce-
narios. We describe the related work in Section 6 and con-
clude in Section 7.

2 ML Framework for Detecting Robots
2.1 Labels Based on Weak Supervision
We use weak supervision (Ratner et al. 2017) to circumvent
the problem of missing labels and identify high-hurdle ac-
tivities that are more likely to be performed by humans than
robots. An example is purchases on the e-commerce site that
require a valid credit card. We identify ad clicks that led to a
purchase on the e-commerce site and label such clicks as
human (0). In order to increase the density of human la-
bels, we also identify ad clicks made by customers with
the highest RFM score that indicates that the customer had
purchased Recently, Frequently, and with a high Monetary
value. Clicks on ads by customers with the highest RFM
score are also marked as human (0). All other clicks are
marked as robotic (1). We formulate the training of a ML
model to identify robotic traffic as a binary classification
problem with labels as described above. We acknowledge
that there are other methods to solve this problem with un-
supervised approaches that do not require explicit labels and
leave the categorization of all possible approaches to robot
detection on ads for a later study.

2.2 Metrics
Due to lack of confident labels on robotic clicks, we cannot
reliably measure standard metrics for a classification model
like precision and recall. Hence we use other metrics that
are closely aligned with the business impact and advertiser
experience, and also allow us to reliably compare models.

Invalidation Rate (IVR) This is defined as the fraction
of clicks marked as robotic by the algorithm, i.e., IVR =
(CLICKS MARKED AS ROBOTIC)/(TOTAL CLICKS). IVR
is indicative of recall of the model, but it cannot be viewed
in isolation since a poorly-performing algorithm might
incorrectly invalidate a significant volume of human clicks.
Hence we always measure IVR in conjunction with False
Positive Rate (defined next) to ensure that we measure recall
without reducing the precision of detection.

False Positive Rate (FPR) This is defined as the fraction
of human clicks invalidated by the algorithm, i.e., FPR =
HUMAN CLICKS MARKED AS ROBOTIC

TOTAL HUMAN CLICKS . But we cannot di-
rectly measure FPR since we do not have confident labels
for human clicks. We consider ad clicks that led to a pur-
chase as a proxy for human clicks and measure a proxy met-
ric FPRPROXY defined as

PURCHASING AD CLICKS MARKED AS ROBOTIC

TOTAL PURCHASING AD CLICKS
. (1)

In rest of the paper FPR refers to FPRPROXY, while noting
that there are two underlying assumptions. First is that all
purchasing clicks are human and second is that purchasing
clicks are a representative sample of human clicks. We are
aware of some robots that make purchases but these do not
substantially change the FPR.

Robotic Coverage We define a heuristic rule to identify
traffic that has a high likelihood to be robotic. If a session
makes more than K ad clicks in a hour, then it is likely to be
robotic. We choose K to be a large number so that humans
are less likely to click on ads at that rate. We define Robotic
coverage as the percentage of such clicks that were marked
as robotic by the model. This metric can also be considered
as an indicator of recall for a model.

2.3 Calibration of ML Model
A ML model’s IVR cannot be held steady across days since
this metric is proportional to the robotic activity in a day.
For example if the robotic activity spikes due to an emergent
attack, then we expect the model’s IVR to proportionally in-
crease if it detects the attack. However we can calibrate a ML
model to maintain the same FPR. FPR is an important busi-
ness metric and the loss of revenue for the company due to
incorrect invalidation of human clicks can be upper bounded
as a function of FPR as shown below.

Consider a cost-per-click (CPC) advertising program that
is supply-constrained but has infinite demand, i.e., every
ad placement has at least one advertiser willing to display
ads on it. Let ACTUAL REVENUE be defined as the total
CPC measured across all ad clicks in the program that were
marked as human by the algorithm and were charged to ad-
vertisers. In this setting, we can upper bound the loss of rev-
enue due to FPR as follows:

Lemma 2.1. For a given FPR, the loss of revenue due to hu-
man clicks incorrectly invalidated by the algorithm is upper-
bounded by FPR

1 - FPR × (ACTUAL REVENUE).

Proof. Let us define MAX REVENUE as CPC added across
all human clicks in the program. Now, in a sufficiently large
advertising program that allows statistical approximations,
ACTUAL REVENUE is lower bounded as

≥
(

Human clicks marked as valid
Total Human clicks

)
∗ (2)

MAX REVENUE

=

(
1− Human clicks marked as Robot

Total Human clicks

)
∗ (3)



MAX REVENUE

= (1− FPR) MAX REVENUE, (4)

where we have a lower bound in (2) since ACTUAL
REVENUE also includes robot clicks that were incorrectly
marked as human.

The loss in revenue from the lemma is bounded as

LOSS IN REVENUE ≤ MAX REVENUE − (5)
ACTUAL REVENUE,

where the bound holds with equality if advertisers do not
run out of budget and are always able to pay for the CPC on
ads that were previously incorrectly invalidated. Substituting
from (4) in the above bound, we get the statement of the
lemma.

Due to this close relationship between FPR and ACTUAL
REVENUE, we would like to control this metric and present
a systematic approach for choosing FPR across traffic slices
in the next section.

3 A Neural Model for Detecting Robots
3.1 Model Architecture
We choose a variety of input features that are updated in
real-time for every ad click and provide the ML model with
a discriminative ability to identify robots from humans:
• Frequency and velocity counters: Volume and rate of

clicks from a user computed over various time periods
ranging from seconds to hours. These features are criti-
cal for identifying emergent robotic attacks that involve
a sudden burst of clicks from a robotic entity.

• User-entity counters: Distinct sessions and users from
an IP address in the recent past. We also compute the
corresponding maximum values seen in an hour. These
features help to identify IP addresses that correspond to
gateways of enterprises that may have many users behind
them who perform a large number of ad clicks. We do not
want to inadvertently mark such IPs as robotic.

• Time of click: Hour-of-day and day-of-week mapped to
points on the unit circle. Human activity follows the regu-
lar diurnal and weekly activity patterns but robotic activ-
ity may not conform to it and these features help to con-
sider activity patterns over time. Also mapping these fea-
tures to the unit circle ensures a smooth transition from
the last hour (or day) to the first one and the model does
not see a sudden jump in the feature value.

• Logged-in: Boolean feature that captures if the user was
logged-in to their account. Logging to their account re-
quires a valid email address and/or phone number and
requires more sophistication from a robot.

We note that this is not an exhaustive list of features for a
ML model for robot detection. These features are used to
train a DNN to solve a classification problem based on the
labels defined in Section 2.1. The network has three fully-
connected hidden layers with ReLU activation. The third
hidden layer is connected to a sigmoid output. Since the
dataset is imbalanced with very few human (0) labels, we

weigh the i-th training sample by wi = C/Ni, where Ni is
total clicks in (houri; dayi; logged-ini; labeli) bucket and C
is a constant added for numerical stability. L2 regularization
is applied on all layers except the first one. The network is
optimized to minimize weighted binary cross-entropy loss
and we use Adam as the optimizer. The network trains on all
ad clicks in a week for one epoch.

3.2 Single-threshold Calibration
The DNN model described above outputs a score for every
ad click and the score can be interpreted as the probability
of the click being robotic. As part of model calibration, we
need to choose a threshold above which all output scores will
be considered as robotic. For each choice of output thresh-
old, we can compute the IVR and FPR for the model as de-
scribed in Section 2.2. We vary the model’s output threshold
and plot IVR against FPR in Figure 1a. We would like to
choose high IVR to improve recall but this would result in
high FPR and a drop in the company’s revenue. An ideal
compromise is to fix the FPR above the knee of the curve
since any increase in IVR beyond the knee comes at a much
higher incremental cost in FPR. An example operating point
corresponding to FPRA is depicted in Figure 1a.

We calibrated the model at this operating point and an-
alyzed its impact on two traffic slices corresponding to ad
clicks from desktop or mobile app devices on different types
of ad placements on the e-commerce site. The choice of
overall FPR = FPRA corresponds to a threshold for model
output and results in FPR calibration points of FPRB and
FPRC for the two traffic slices as shown in Figure 1b. But
this approach is clearly sub-optimal since it has resulted in
under-calibration for desktop users while over-calibration
for ad clicks from the mobile app. At this operating point,
we are not invalidating bots in the desktop slice while we
are incurring extra FPR and losing revenue in the mobile
app slice. This can also lead to a difference in performance
of ad campaigns on traffic slices.

3.3 SLIDR: Slice-level Detection of Robots
If we divide traffic into multiple slices, then there are two
possible approaches towards choosing FPR operating points
(and corresponding thresholds) for each slice:
1. Individually optimize slices: Choose the FPR at the

knee of the IVR-FPR curve for each traffic slice. But this
approach does not allow us to control the overall FPR
which is a critical business metric.

2. Joint optimization: Pick an overall FPR budget and
jointly optimize across all slices.

Next we describe (2) in more detail. Let the IVR and FPR for
the i-th slice be defined as IVRi and FPRi respectively. Then
the overall FPR =

∑N
i=0 FPRi, where N is the total num-

ber of traffic slices. Similarly we can compute the overall
IVR. Let the overall FPR be limited to FPRmax. If we max-
imize IVR subject to FPR ≤ FPRmax, then an optimal solu-
tion may choose FPRi = IVRi = 0 for some slice, which
is unacceptable since it will provide no protection against
robots in the i-th slice. Hence we bound the robotic cover-
age Ri (see Section 2.2) in i-th slice to ensure a certain recall



FPRA
FPR

IV
R

(a) IVR-FPR curve of full traffic

FPRB FPRC
FPR

IV
R Mobile app

Desktop

(b) IVR-FPR curves of traffic slices.

Figure 1: Performance curves for the model calibrated by choosing a single threshold across traffic slices.

of robots in the slice. The optimization problem reduces to:

max
N∑
i=0

IVRi, s.t.
N∑
i=0

FPRi ≤ FPRmax (6)

Ri > Rmin, ∀i.

The robotic coverage Ri monotically increases with FPRi

and the second constraint can be replaced with an equiv-
alent constraint FPRi > FPRi,min where FPRi,min is the
lowest FPR for the i-th slice when its robotic coverage ex-
ceeds Rmin. Next, we can approximate each slice’s IVR-
FPR curve by a quadratic y = ax2 + bx + c, where a, b, c
are determined with linear regression. Concave shape of the
IVR-FPR curve ensures that this quadratic approximation al-
ways results in a < 0, due to which the quadratic is strictly
concave. We can rewrite the above optimization problem
with this approximation for all slices:

max
N∑
i=0

aix
2
i + bixi + ci, s.t.

N∑
i=0

xi ≤ xmax (7)

xi > xi,min, ∀i,

where xi, xi,min, and xmax represent FPRi, FPRi,min, and
FPRmax respectively, and ai, bi, ci are constants correspond-
ing to the quadratic approximation for i-th slice. Now (7) is
a standard convex optimization problem and can be solved
with a package like (Fu, Narasimhan, and Boyd 2020).

In a typical e-commerce site, ad placements will be across
search pages or product description pages while the ad clicks
originate from devices corresponding to desktop, mobile
browser, and mobile app. In the production SLIDR model,
we consider traffic slices by considering various combina-
tions across ad placements and devices. The optimization
problem in (6) needs to be solved once in an offline setting

to determine the FPR operating points for all slices. Subse-
quently we adjust the operating points periodically or when
we notice any deviations in the traffic patterns in various
slices.

4 Evaluation
In this section, we check the generalization ability of
the model and systematically evaluate the weak labelling
scheme and importance of sample weights.

4.1 Model Generalization
To study the generalization of the model, we choose a value
for the train FPR, determine the operating point for the
model, and compute the test FPR incurred by the model
at this threshold. Note that train FPR is calibrated on train-
ing data of one week used for training the model while the
test FPR is computed on the next week’s data which was
not seen by the model. Also we perform this experiment for
single-threshold calibration where we pick the same thresh-
old across all traffic slices for the sake of simplicity. In an
ideal scenario, the model’s test FPR should exactly match
the train FPR and a drift would indicate a lack of general-
ization of the model. As depicted in Figure 2a, our model
deviates very little from the ideal reference with no general-
ization error, indicating the stability of our model.

4.2 Comparison with Baselines
We compare our neural model for detecting robots against a
heuristic and a logistic regression model. We define a heuris-
tic based on velocity of clicks received from an entity in
a set time window. Clicks originating from an entity that
have high velocities are likely to be robotic in nature. We
also compare our neural model against a logistic regression



Train FPR

Te
st

 F
PR

Model
Ideal reference

(a) Comparison of train and test FPR

FPR

IV
R

DNN
Logistic Regression
Velocity heuristic

(b) Model comparison against baselines

Figure 2: Evaluation of the neural model’s generalization and comparison against baselines

model that uses the same features and training setup (includ-
ing the sample weights and the combination of weak labels).

As depicted in Figure 2b, we find that our neural model
is vastly superior to both the baselines considered. The ve-
locity based heuristic suffers from low recall and hence, has
significantly lower IVR at a set FPR. Although, the logis-
tic regression model uses the same features, it has signifi-
cantly less capacity as compared to the neural model. This
sugggests that the neural model is able to learn more sophis-
ticated patterns as compared to the baselines.

4.3 Effect of Using Multiple Weak Labels
As described in Section 2.1, we define human labels based
on ad clicks that led to a purchase as well as clicks from
customers with a high RFM score. To understand the impor-
tance of using a combination of both these weak labels, we
train and evaluate a model that does not assign human labels
to clicks from high RFM customers and only marks ad clicks
that led to a purchase as human (0). Figure 3a has the IVR
v/s FPR curves for models trained with and without human
labels based on RFM signal. We find that to achieve a simi-
lar IVR level as the model trained with both the weak labels,
the model trained with labels based only on purchases needs
to significantly increase its FPR. Further, we find that ex-
cluding human labels based on the RFM signal increases the
instability of FPR across hours, see Figure 3b. The model
trained with human labels based only on purchases has a
significantly higher variance in FPR across hours than the
model trained with dense labels. For both the plots in Fig-
ure 3, we consider single-threshold calibration to simplify
the exposition. Hence, we see that a combination of weak
labels based on ad clicks that led to purchases as well as ad
clicks from high-RFM customers is essential and enables the
model to better disambiguate between robots and humans.

4.4 Effect of Removing Sample Weights
We check the importance of sample weights by training a
model without them, i.e., all data points in the training set are
given equal importance. Similar to the comparison method-
ology described in Section 4.3, we plot the IVR v/s FPR of
the model at various operating points in Figure 4. We find
the model trained with sample weights to have a superior
performance than the model without sample weights. For a
similar IVR level, the model trained without sample weights
incurs almost double the FPR as shown in Figure 4a. Sample
weights allow the model to proportionally weigh data points
across various traffic slices in the training data. In particular,
early morning hours, weekdays, and non-logged-in slices are
examples of sparse traffic slices that need to be compensated
for by sample weighing. For instance, we see that the model
trained without sample weights has a high variance in FPR
across hours, see Figure 4b.

5 Deployment in Production
5.1 System Design
The production setup consists of a real-time component for
feature computations and low-latency model inference, an
offline component for periodic model retraining and calibra-
tion, and a control plane for model management, see Fig-
ure 5.

Real-time Component Static features are stored in a
Read-only cache that is ideal for bulk key-value updates and
fast lookups, whereas dynamic features which update with
every click are stored in a Redis cache that supports both low
latency and high throughput read and write operations. The
inference service reads features for every click, runs model
inference on a fleet of NVIDIA T4 GPU instances on AWS,
and uses vanilla TensorFlow Serving containers operating



FPRD FPRE
FPR

IV
R

Labels from purchases and RFM
Labels from purchases

(a) IVR v/s FPR in the test period

0 5 10 15 20
Hour of Day

FP
R

Labels from purchases and RFM
Labels from purchases

(b) FPR across various hours of the day

Figure 3: Compare models trained with and without human labels based on high-RFM clicks.

behind a Network Load Balancer that auto-scales the ser-
vice to handle traffic surges. The inference service has p99.9
latency below 5ms to meet the real-time constraints.

Offline Component The pre-training stage has Spark jobs
that join feature logs from the real-time component with the
labels and static features to construct the training dataset.
This stage is also responsible for stringent quality checks
on the training data. The model is then trained on an Sage-
Maker based GPU cluster, which outputs the model artifacts
to a S3 location. The post-training stage calibrates and com-
pares various metrics between the current model in produc-
tion and the latest trained model and decides if the current
model should be replaced by the new one.

Control Plane Post training, the model artifacts are saved
in a S3 location and replicated to a shared file system (Ama-
zon EFS), where it gets unpacked, deployed, and ready to be
served. The details of the model such as a unique identifier
and thresholds are maintained in a configuration file. The
real-time module appends the model identifier to the infer-
ence service endpoint and makes a POST REST call to get
the probability score. It then compares the probability score
with the threshold for the traffic slice, to make a decision
whether the ad click is robotic or human.

5.2 Guardrails Against Anomalous Behavior
An anomalous behavior in the SLIDR system can result
in significant business impact by over or under-invalidating
traffic. We have observed two kinds of problems that can
lead to such events: corruption of training data and poorly
trained models.

Label and Feature Quality Checks The labels and fea-
tures for SLIDR are generated through hourly Spark jobs

that can sometimes fail due to infrastructure-related issues
or missing upstream datasets. In particular if human (0) la-
bels are missing for a particular hour in the training data,
which can happen if the upstream dataset containing pur-
chases was not accessible for that hour, then the model mis-
takenly learns that a particular hour in a day has zero human
traffic. This causes the model’s IVR to sharply increase for
the affected hour and can potentially cause a huge revenue
loss. To prevent this, we have guardrails to check that every
hour x day across the training period of a week contains a
minimum number of clicks with a certain human label den-
sity. We ignore any training samples that have null values for
a feature and have a guardrail on the total number of such
samples. If any of these guardrails fails, then model training
will not proceed for that instance.

Check Metrics for Model Promotions Post-training of a
new model, we need to decide whether to replace the exist-
ing model in production or continue with it. The new model
needs to pass many checks to qualify for promotion:

• The new model’s metrics like AUROC and log-loss at the
end of training should lie within specific bands.

• The new model should have a higher IVR in validation
data than the production model though both are cali-
brated at the same FPR, which indicates that the new
model has higher recall of robots.

• The new model’s IVR on most recent hours should be
within a certain percentage of the IVR of the production
model, to ensure that the update does not cause any dras-
tic changes in production metrics.

If any of these checks are not met, then the new model does
not get promoted.



FPRF FPRG
FPR

IV
R

With sample weights
Without sample weights

(a) IVR v/s FPR in the test period

0 5 10 15 20
Hour of Day

FP
R

With sample weights
Without sample weights

(b) FPR across various hours of the day

Figure 4: Compare models trained with and without sample weights.

5.3 Disaster Recovery Mechanisms
In spite of multiple guardrails, we have faced scenarios
wherein an anomalous model got promoted in production.
We have built two mechanisms to deal with this scenario as
outlined below.

Quick Rollbacks The model in production has an identi-
fier and thresholds for various traffic slices that are saved in
a configuration file. The real-time module has listeners at-
tached to this configuration file and imports the new model
whenever its updated. When we observe sharp metric devi-
ations from a model, we have a mechanism to manually up-
date the configuration file and roll back the model identifer
to a previous stable version, thereby mitigating any issues.

Replay Tool We can replay traffic through a previous sta-
ble model and publish decisions, albeit with a delay. Some of
the features in SLIDR like velocity of ad clicks are sensitive
to time differences between two clicks from a user. The re-
play infrastructure reads clicks from a chosen time period
and passes them through the feature computation module
while ensuring that the timestamps are accurately handled
to simulate real-time behavior.

6 Related Work
6.1 Fraud Detection
Fraud Detection as a problem in machine learning has been
widely studied especially in the context of credit card fraud
with datasets such as (Yeh and Lien 2018) serving as com-
mon benchmarks. In the context of online advertising, fraud
detection has certain unique characteristics as previously
mentioned (evolving landscape, lack of labels, etc.). There
have been various works which rely on non-ML based ap-
proaches such as rules, signature-based measures, etc. Rule-

based methods rely on certain characteristics to identify pat-
terns that differentiate fraud activity from human activity.
(Stone-Gross et al. 2011) is an example where a set of rules
based on common aggregate statistics with tunable thresh-
olds was developed to identify anomalous traffic. Some pre-
vious works have also used data mining to identify more nu-
anced patterns (Oentaryo et al. 2014). Although rules have
an advantage of being interpretable and can have high pre-
cision, they have a low recall by not being able to model
complex patterns. Additionally they are not flexible enough
to adapt to an adversarial and evolving landscape.

There have been various learning-based approaches to
identify click fraud as well. TalkingData, a leading big data
service platform in China, conducted a click adfraud detec-
tion challenge on Kaggle (Talking Data 2017). Top solutions
in this competition utilized variants of tree based models
such as Gradient Boosting Machines, Bagged Trees, etc. For
example, (Mouawi et al. 2018) proposed and compared three
models; KNN, SVMs and Artificial Neural Networks on ag-
gregate features such as distinct IPs per publisher to identify
click fraud. (Thejas et al. 2019) utilized GANs to produce
adversarial data to boost performance of a supervised Neu-
ral Network model.

6.2 Weak Supervision
Weak Supervision deals with creating supervised models
with labels that are noisy and limited. In the past, various
solutions have suggested that a relatively good model can
be constructed with a combination of such weak labels. To
the best of our knowledge, we are not aware of any work
that has utilized weak labels to build models that have been
deployed at scale to combat click fraud detection. Weak Su-
pervision has been used in less adversarial settings such as
Fake News Detection on Twitter (Helmstetter and Paulheim



Figure 5: Deployment Diagram

2018) or elsewhere (Yuan et al. 2020). Weak Labels have
also been used in computer vision for identifying image-
level labels for tasks such as Object Detection on Microsoft
COCO (Oquab et al. 2015) and in scenarios where highly
precise labels are very difficult to obtain such as computa-
tion pathology (Campanella et al. 2019) and remote sens-
ing (Han et al. 2015). Weak labels act as a replacement for
highly precise labels since they can be obtained relatively
easily. Snorkel (Ratner et al. 2017), was designed with a
similar philosophy and is a system to create training datasets
with weak labels and enables users to write labelling func-
tions based on heuristics.

6.3 Optimizing ML Models on Subsets of Data
Slice-level Optimization Often in practical settings,
datasets have critical slices on which performance needs to
be maintained. Optimizing for an overall objective may not
necessarily perform well on these individual slices. (Chen
et al. 2019) studied this problem where they introduced they
concept of “slicing” functions which identify the data sub-
sets and developed an approach where the model learns ex-
pert slice-level representations and these expert representa-
tions are combined through attention mechanisms. (Wang
et al. 2021) proposed an enhancement over the slice-based
learning model by utilizing a mixture-of-attentions to learn
slice-aware dual-attentive representations. In our setting, the
dataset slices are relatively strongly defined (examples are
desktop or mobile-app) and hence we do not require the
concept of slicing functions. We find that optimizing deci-
sion thresholds of our model for particular slices does not
deplete overall model performance and at the same time cal-
ibrates the model well for particular slices, similar to (Chen
et al. 2019).

Fairness in ML Models Recently, ML models have been
shown to learn certain biases that are particular to certain
subsets in data and were learnt as a result of an overall learn-
ing framework (Corbett-Davies and Goel 2018). Issues and
problems surrounding this have been studied under the um-
brella of Fairness in Machine Learning Systems. Note that
fairness usually defines these data subsets around human at-
tributes such as gender, ethnicity, etc., but our data subsets
(traffic slices) are defined from a standpoint of the types of
devices that send traffic and placements for ads. Through the
optimization framework described in this paper and slice-
level calibration, we ensure that the SLIDR system avoids
biases and offers comparable protection to traffic across var-
ious slices. Recently (Salvador et al. 2021) followed a simi-
lar approach of slicing datasets and identified sensitive sub-
groups through clustering of image features and calibrated
a face verification model on the FPR incurred on these sub-
groups.

7 Concluding Remarks
We presented SLIDR – a neural network based model for
large-scale realtime robot detection across traffic slices. We
showed that the model trained using hand-crafted features
with multiple weak labels, when combined with sample
weighing and traffic slice level calibration can be highly
effective in detecting click robots on online ads. In the fu-
ture, we plan to make the model more feature-rich with end-
to-end learned representations for users, IPs, UserAgents,
search queries, etc. With the increased number and types
of features, we plan to experiment with advanced neural ar-
chitectures like cross-networks that can effectively capture
feature interactions in tabular data.



References
Campanella, G.; Hanna, M. G.; Geneslaw, L.; Miraflor, A.;
Werneck Krauss Silva, V.; Busam, K. J.; Brogi, E.; Reuter,
V. E.; Klimstra, D. S.; and Fuchs, T. J. 2019. Clinical-
grade computational pathology using weakly supervised
deep learning on whole slide images. Nature medicine,
25(8): 1301–1309.
Chen, V.; Wu, S.; Ratner, A. J.; Weng, J.; and Ré, C. 2019.
Slice-based learning: A programming model for residual
learning in critical data slices. Advances in neural infor-
mation processing systems, 32.
Corbett-Davies, S.; and Goel, S. 2018. The measure and
mismeasure of fairness: A critical review of fair machine
learning. arXiv preprint arXiv:1808.00023.
Fu, A.; Narasimhan, B.; and Boyd, S. 2020. CVXR: An R
Package for Disciplined Convex Optimization. Journal of
Statistical Software, 94: 1–34.
Han, J.; Zhang, D.; Cheng, G.; Guo, L.; and Ren, J. 2015.
Object Detection in Optical Remote Sensing Images Based
on Weakly Supervised Learning and High-Level Feature
Learning. IEEE Transactions on Geoscience and Remote
Sensing, 53(6): 3325–3337.
Helmstetter, S.; and Paulheim, H. 2018. Weakly Super-
vised Learning for Fake News Detection on Twitter. In 2018
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), 274–277.
Mouawi, R.; Awad, M.; Chehab, A.; Hajj, I. H. E.; and
Kayssi, A. 2018. Towards a Machine Learning Approach for
Detecting Click Fraud in Mobile Advertizing. In 2018 In-
ternational Conference on Innovations in Information Tech-
nology (IIT), 88–92.
Oentaryo, R.; Lim, E.-P.; Finegold, M.; Lo, D.; Zhu, F.;
Phua, C.; Cheu, E.-Y.; Yap, G.-E.; Sim, K.; Nguyen, M. N.;
et al. 2014. Detecting click fraud in online advertising: a
data mining approach. The Journal of Machine Learning
Research, 15(1): 99–140.
Oquab, M.; Bottou, L.; Laptev, I.; and Sivic, J. 2015. Is ob-
ject localization for free? - Weakly-supervised learning with
convolutional neural networks. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 685–
694.
Ratner, A.; Bach, S. H.; Ehrenberg, H.; Fries, J.; Wu, S.; and
Ré, C. 2017. Snorkel: Rapid training data creation with weak
supervision. In Proceedings of the VLDB Endowment. Inter-
national Conference on Very Large Data Bases, volume 11,
269. NIH Public Access.
Salvador, T.; Cairns, S.; Voleti, V.; Marshall, N.; and Ober-
man, A. 2021. FairCal: Fairness Calibration for Face Verifi-
cation. arXiv preprint arXiv:2106.03761.
Stone-Gross, B.; Stevens, R.; Zarras, A.; Kemmerer, R.;
Kruegel, C.; and Vigna, G. 2011. Understanding Fraud-
ulent Activities in Online Ad Exchanges. In Proceed-
ings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’11, 279–294. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450310130.

Talking Data. 2017. TalkingData AdTracking Fraud De-
tection Challenge. https://www.kaggle.com/c/talkingdata-
adtracking-fraud-detection. Accessed: 2022-11-28.
Thejas, G.; Boroojeni, K. G.; Chandna, K.; Bhatia, I.; Iyen-
gar, S.; and Sunitha, N. 2019. Deep learning-based model
to fight against ad click fraud. In Proceedings of the 2019
ACM southeast conference, 176–181.
Wang, C.; Lee, S.; Park, S.; Li, H.; Kim, Y.-B.; and Sarikaya,
R. 2021. Learning slice-aware representations with mixture
of attentions. arXiv preprint arXiv:2106.02363.
Yeh, I.; and Lien, C. 2018. UCI Machine Learning Reposi-
tory: Default of Credit Card Clients Data Set. https://archive.
ics.uci.edu/ml/datasets/default+of+credit+card+clients. Ac-
cessed: 2022-11-28.
Yuan, C.; Ma, Q.; Zhou, W.; Han, J.; and Hu, S. 2020. Early
detection of fake news by utilizing the credibility of news,
publishers, and users based on weakly supervised learning.
arXiv preprint arXiv:2012.04233.


