arXiv:2106.04008v1 [cs.LG] 7 Jun 2021

Widening Access to Applied Machine Learning with TinyML

Vijay Janapa Reddi* Brian Plancher* Susan Kennedy* Laurence Moroney"

Pete Warden' Anant Agarwal** Colby Banbury* Massimo Banzi® Matthew Bennett*
Benjamin Brown* Sharad Chitlangial Radhika Ghosal* Sarah Grafman* Rupert Jaeger|
Srivatsan Krishnan* Maximilian Lam* Daniel Leiker! Cara Mann* Mark Mazumder*
Dominic Pajak® Dhilan Ramaprasad® J. Evan Smith* Matthew Stewart* Dustin Tingley*

*Harvard University
TGoogle

ABSTRACT

Broadening access to both computational and educational resources
is critical to diffusing machine-learning (ML) innovation. However,
today, most ML resources and experts are siloed in a few countries
and organizations. In this paper, we describe our pedagogical ap-
proach to increasing access to applied ML through a massive open
online course (MOOC) on Tiny Machine Learning (TinyML). We
suggest that TinyML, ML on resource-constrained embedded de-
vices, is an attractive means to widen access because TinyML both
leverages low-cost and globally accessible hardware, and encour-
ages the development of complete, self-contained applications, from
data collection to deployment. To this end, a collaboration between
academia (Harvard University) and industry (Google) produced a
four-part MOOC that provides application-oriented instruction on
how to develop solutions using TinyML. The series is openly avail-
able on the edX MOOC platform, has no prerequisites beyond basic
programming, and is designed for learners from a global variety of
backgrounds. It introduces pupils to real-world applications, ML
algorithms, data-set engineering, and the ethical considerations of
these technologies via hands-on programming and deployment of
TinyML applications in both the cloud and their own microcon-
trollers. To facilitate continued learning, community building, and
collaboration beyond the courses, we launched a standalone web-
site, a forum, a chat, and an optional course-project competition.
We also released the course materials publicly, hoping they will
inspire the next generation of ML practitioners and educators and
further broaden access to cutting-edge ML technologies.

1 INTRODUCTION

The past two decades have seen machine learning (ML) progress
dramatically from a purely academic discipline to a widespread
commercial technology that serves a range of sectors. ML allows
developers to improve business processes and human productivity
through data-driven automation. Given applied ML’s ubiquity and
success, its commercial use should only increase. Existing ML appli-
cations cover a wide spectrum that includes digital assistants [1, 2],

§ Arduino, IBITS Pilani, work done as Harvard intern, | CreativeClass.ai, *edX, *MIT

Embedded
Systems

pecessible, Hands
~on

Real-World Product
Applications Life Cycle

Figure 1: We designed a new applied-ML course motivated
by real-world applications, covering not only the software
(algorithms) and hardware (embedded systems) but also the
product life cycle and responsible AI considerations needed
to deploy these applications. To make it globally accessible
and scalable, we focused on the emerging TinyML domain
and released the course as a MOOC on edX.

autonomous vehicles [3, 4], robotics [5], health care [6], transporta-
tion [7, 8], security [9], and education [10, 11], with new application
use cases continuously emerging every few days.

The proliferation of this technology and associated jobs have
great potential to improve society and uncover new opportunities
for technological innovation, societal prosperity, and individual
growth. But it all rests on the assumption that everyone, globally,
has unfettered access to ML technologies, which isn’t the case.

Expanding access to applied ML faces three challenges. First is a
shortage of ML educators at all levels [12, 13]. Second is insufficient
resources, as training and running ML models often requires costly,
high-performance hardware, especially as data sets continue to
balloon. Third is a growing gap between industry and academia, as
even the best academic institutions and research labs struggle to
keep pace with industry’s rapid progress. Addressing these critical
issues requires innovative education and workforce training to
prepare the next generation of applied-ML engineers.

This paper presents a pedagogical approach, developed as an
academic and industry collaboration led by Harvard University and
Google, to address these challenges and thereby increase global
access to applied ML. The resulting course, TinyML on edX, focuses
not only on teaching the topic by exploring real-world TinyML

Widening Access to Applied Machine Learning with TinyML

applications running on low-cost embedded systems, but it also
considers the ethical and life-cycle challenges of industrial product
development and deployment (see Figure 1).

To improve accessibility we employ both cloud computing and
low-cost hardware. We leverage Google’s free, open-source Ten-
sorFlow and Colaboratory tools along with globally accessible in-
expensive embedded devices from Arm and Arduino. We believe
hands-on learning that transcends the underlying ML equations is
essential. To this end, we focus our approach on TinyML.

Tiny Machine Learning (TinyML), a rapidly growing subfield of
applied ML, is a prime candidate for enabling hands-on education
globally. This budding area focuses on deploying simple yet power-
ful models on extremely low-power, low-cost microcontrollers at
the network edge. TinyML models require relatively small amounts
of data, and their training can employ simple procedures. Further-
more, as TinyML can run on microcontroller development boards
with extensive hardware abstraction, such as Arduino products,
deploying an application onto hardware is easy. TinyML enables
a variety of always-on applications for battery-powered devices—
for instance, environmental monitoring and industrial predictive-
maintenance analytics. Moreover, the same cost and efficiency bene-
fits open the door to distributed TinyML systems working in concert
at the “edge” of the cloud-computing network.

Since TinyML systems are becoming powerful enough for many
commercial tasks, learners can acquire skills that can directly apply
to their professional careers and future job prospects. The lessons
of complete-TinyML-application design, development, deployment
and management are also transferable to large-scale ML systems
and applications, such as those in data centers and mobile devices.
This technology thus provides an attractive entry into applied ML.

Our approach to applied ML through the lens of TinyML provides
experience with the complete industrial ML workflow, and it also
explores the ethics of software deployment—-crucial knowledge for
the applied-ML workforce. Creating an ML system is a high-stakes
endeavor since inaccurate or unpredictable model performance
can erode consumer trust and reduce the chance of success. So
understanding ethical reasoning is a crucial skill for ML engineers.
To this end, we collaborated with the Harvard Embedded EthiCS
program to develop and integrate a responsible-Al curriculum into
each course, providing opportunities to practice identifying ethical
challenges and thinking through potential solutions to concrete
problems, many of which are based on real-world case studies.

To broaden and widen access, we aimed to provide TinyML on a
globally available platform that lets users benefit at no cost from
instructional resources. We therefore deployed our pedagogical
approach on edX, a MOOC provider created by Harvard and MIT
that hosts university-level courses in many disciplines. Notably,
professionals can choose to prove their newly earned skills with a
certificate, available for a small fee, once they satisfy the testing re-
quirements. To foster collaboration and continued learning beyond
this edX course, we developed a standalone website, a Discourse
forum, a Discord chat, and an optional course-project competition.

We launched the core TinyML edX series, comprising three se-
quential courses, between October 2020 and March 2021; an op-
tional fourth course is under development. On average, more than

1,000 new students enroll each week. After eight months, over
40,000 have enrolled from 170 countries. They come from diverse
backgrounds and experiences, ranging from complete novices to
experts who want to master an emerging field. Feedback suggests
this strong enrollment may owe to the unique collaborative struc-
ture we foster between students, teachers, and industry leaders.
Shared ownership between Harvard faculty and staff and Google
instructors and engineers appears to give participants confidence
they are gaining skills that industry needs both today and tomor-
row. Moreover, we recognize that opportunities to interact with
experts is both encouraging and validating.

In summary, our effort to expand access to and participation in
applied ML reflects five guiding principles:

(1) Focus on application-based pedagogy that covers all ML
aspects. Instead of isolated theory and ML-model training,
show how to physically design, develop, deploy, and manage
trained ML models.

(2) Work with industry and academic leaders to aid learners in
developing the skills that industry requires today and will
require in the foreseeable future.

(3) Raise awareness of the ethical challenges associated with
ML and familiarize learners with ethical-reasoning skills to
identify and address these challenges.

(4) Prioritize open access to students worldwide by teaching
TinyML at a global scale through a MOOC platform using
low-cost hardware that is available anywhere.

(5) Build community by providing a variety of platforms so
participants can learn collaboratively and showcase their
work no matter where they live.

We hope the approach we devised brings ML to more people. As
such we have open sourced our courseware materials which can be
found at https://github.com/tinyMLx/courseware, and note
that this paper is part of a broader effort to enable activities such as
TinyML4 Developing Countries (TinyML4D) and TinyML4 Science,
Technology, Engineering, and Mathematics (TinyML4STEM).

We have organized the rest of the paper as follows. It begins
with a discussion of the criteria for increasing access to applied ML
(Section 2). We then explain both why TinyML is a useful entry to
practical ML and how our courses meet those criteria (Section 3).
Next, the paper describes our series (Section 4) and how we inte-
grated ethics throughout (Section 5). We then detail how we quickly
and efficiently deployed TinyML by innovating in both multimedia
production and the use of MOOCs as well as other online platforms
(Section 6), in addition to analyzing early data on our courses’ im-
pact (Section 7). Finally, we introduce the TinyML Open Education
Initiative: our effort to further broaden the courses’ impact through
activities such as TinyML4STEM (Section 8). To provide a balanced
viewpoint, we discuss some limitations of our approach and suggest
alternatives (Section 9). Finally, we conclude the paper with the
main takeaways and the lessons learned (Section 10).

https://github.com/tinyMLx/courseware

Widening Access to Applied Machine Learning with TinyML

2 CHALLENGES AND OPPORTUNITIES

We propose three criteria to empower applied-ML practitioners.
First, no one size fits all with regard to interest, experience, and mo-
tivation, especially when broadening participation. Second, given
ML innovation’s breakneck pace, academic/industrial collaboration
on cutting-edge technologies is paramount. Third, learners who
wish to prepare for ML careers need experience with the entire
development process from data collection to deployment, and they
must understand the ethical implications of their designs before
deploying them.

2.1 Student Background Diversity

A major challenge in expanding ML access is that participants begin
applied-ML courses with diverse background knowledge, work
experience, learning styles, and goals. Hence, we must provide
multiple on-ramps to meet the needs of a varied population.

Participants include high-school and university students who
want to learn about AI for the first time. Not only will this knowl-
edge empower them to develop cutting-edge applications, but it
will also give them an edge in their careers, as many employers
expect new hires to have some ML background.

Other participants are industry veterans looking to either pivot
their careers toward ML or study the landscape of the TinyML
field. For example, some are computer-systems engineers who want
to learn about ML in general. Others are ML engineers and data
scientists who want to expand their skills by applying ML. Yet
others are doctors, scientists, or environmentalists who are curious
about how TinyML technology could transform their fields.

Other participants are self-taught, makers, tinkerers, and hobby-
ists who want to build smart “things” based on emerging technolo-
gies. This group typically operates at the systems level, drawing on
prior art, but they want to understand how different components
or functional blocks fit together to create intelligent ML devices.

Given this broad spectrum, we have a unique opportunity to
enable inclusive learning for all despite differing backgrounds and
expertise. But we must provide multiple on-ramps. Specifically, we
chose to structure the course in a spiral that sequentially addresses
the same concepts with increasing complexity [14]. Doing so en-
sures that not only do participants reinforce fundamentals while
picking up new details, but they also master important objectives
at every stage. This approach has been shown to improve learning
while meeting each individual’s objectives [15].

2.2 Need for Academia/Industry Collaboration

Expanding ML access requires the expertise of academia and indus-
try. Academia is strong in structured teaching: it creates in-depth,
rigorous curricula to impart a deep understanding of a field. Con-
versely, industry is more pragmatic, developing the skills necessary
for employment. These approaches are complementary.

Also, ML is moving rapidly thanks largely to industry’s access
to rich data. Analysis of ML-research publications at the NeurIPS
ML conference suggests industry leads ML innovation [16]. As
such, industry has essential domain-specific knowledge that helps
ground ML pedagogy in practical skills and real-world applications.

(a) (b) (©

Figure 2: Example TinyML devices: (a) Pico4ML, (b) Arduino
Nano 33 BLE Sense, and (c) STMicroelectronics Sensor Tile.

We belive that academia and industry must work in tandem
to deliver high-quality, accessible, foundational, and skills-based
ML content. Joining a strong academic institution and a industry
leader in technology innovation, with a history of releasing free
and accessible resources, makes students confident that they are
learning the best skills from the best teachers.

2.3 Demand for Full-Stack ML Expertise

In ML, the “full stack”! approach to building and using ML models
is the core skill that will define future engineers. The engineers
who bring long-term value to their industry are those who have the
in-depth knowledge to innovate beyond well-known applications
and scenarios. In fact, full-stack developers are now more numer-
ous than all other developers combined, with 55% of developers
identifying as full-stack in a 2020 report [17].

Our academia and industry collaboration can ensure the course
series imparts the full-stack abilities that industry demands. Doing
so requires content beyond the narrow, well-lit path of ML-model
training, optimization, and inference. We therefore also focus on
acquiring and cleansing data, deploying models in hardware, and
managing continuous model updates on the basis of field results.
Our hope is that learners will gain a whole new set of applied-ML
skills and unlock new ideas.

3 ML’S FUTURE IS TINY AND BRIGHT

We employ Tiny Machine Learning (TinyML), a cutting-edge applied-
ML field that brings the potential of ML to low-cost, low-performance,
and power-constrained embedded systems and thereby enables
hands-on learning. TinyML lets us impart ML-application design,
development, deployment, and life-cycle-management skills.

3.1 Introduction to TinyML

TinyML refers to the deployment of ML resources on small, resource-
constrained devices (Figure 2). It starkly contrasts with traditional
ML, which increasingly focuses on large-scale implementations
that are often confined to the cloud. TinyML is neither a specific
technology nor a method per se, but it acts in many ways as a proto-
engineering discipline that combines machine learning, embedded
systems, and performance engineering. Similar to how chemical
The term full-stack comes from historic career growth in web technologies and
the Internet. It began as a series of loosely linked skills but now encompasses web

development from the lowest level, the server, to the highest level, the web browser or
mobile app.

Widening Access to Applied Machine Learning with TinyML

Table 1: Cloud & Mobile ML systems versus TinyML systems.

Platform ‘ Architecture ‘ Memory ‘ Storage ‘ Power ‘ Price
Cloud GPU HBM SSD/disk

E.g., Nvidia V100 Nvidia Volta 16GB TB-PB 250W ~$9,000
Mobile CPU DRAM Flash

E.g., cellphone Arm Cortex-A78 4GB 64GB ~8W ~$750
Tiny

E.g., Arduino Nano MCU SRAM eFlash

33 BLE Sense Arm Cortex-M4 256KB 1MB 0.05W $3

engineering evolved from chemistry and how electrical engineering
evolved from electromagnetism, TinyML has evolved from machine
learning in cloud and mobile computing systems.

The TinyML approach dispels the barriers of traditional ML,
such as the high cost of suitable computing hardware and the
availability of data. As Table 1 shows, TinyML systems are nearly
two to three orders of magnitude cheaper and more power efficient
than traditional ML systems. As such, this approach can serve in
embedded devices at little to no cost and can handle tasks that go
beyond traditional ML. The TinyML approach also makes it easy
to emphasize the importance of responsible Al (Section 5).

TinyML supports large-scale, distributed, and local ML tasks.
Inference on low-cost embedded devices allows scalability, and
their low power consumption enables distribution even to remote
locations far from the electric grid. The number of tiny devices in
the wild far exceeds the number of traditional cloud and mobile sys-
tems [18]. The ubiquity of tiny embedded devices makes TinyML a
candidate for local ML tasks that were once prohibitively expensive,
such as distributed sensor networks and predictive maintenance
systems in industrial manufacturing settings.

TinyML applications are broad and continue to expand as the
field gains traction. The approach’s unique value stems primarily
from bringing ML close to the sensor, right where the data stream
originates. Therefore, TinyML permits a wide range of new appli-
cations that traditional ML cannot deliver because of bandwidth,
latency, economics, reliability, and privacy (BLERP) limitations.

Common TinyML applications include keyword spotting, visual
wake words, and anomaly detection. Keyword spotting generally
refers to identification of words that typically act as part of a cas-
cade architecture to kick-start or control a system, such as a mo-
bile phone responding to voice commands [19, 20]. Visual wake
words involve parsing image data to find an individual (human
or animal) or object. This task can potentially serve in security
systems [9], intelligent lighting [21], wildlife conservation [22, 23],
and more. Anomaly detection looks for abnormalities in persistent
activities [24]. It has many applications in both consumer and com-
mercial markets, such as checking for abnormal vibrations [25] or
temperatures [26] to provide early warnings of potential failures
and to enable preventive maintenance [27, 28].

3.2 TinyML for Applied ML

An applied-ML engineer should have this full-stack experience to
appreciate the impact of the various ML-development stages on the
end user. In prototypical ML, such as training large neural-network

Over 250
Billion

4 Billion

o a TinyML
== X i i

General Mobile

Figure 3: The number of available ML courses is dispropor-
tionate to the number of systems in the field.

models in the cloud, learners are unable to participate locally in end-
to-end ML development. For example, it is impossible to require
them to collect millions of images (akin to ImageNet [29]) for large
and complex tasks, such as general image classification. Even more
difficult is asking all learners to buy the computational resources
to train a complex ML model and then evaluate its performance in
the real world.?

By contrast, the small form factor and domain-specific tasks of
TinyML enable the full ML workflow, starting from data collection
and ending with model deployment on embedded devices. Students
thereby gain a unique experience. For example, to implement key-
word spotting in their native language, course participants learn
to collect their own speech data (e.g., by saying “y&’at’ééh,” which
is Navajo for “hello”), train a model on that data, deploy it in an
embedded device, and test the device in their community.

Such activities create an immersive learning experience, and they
are feasible with TinyML because they only require about 30-40
samples of spoken keywords—easy to collect (only from people
with their explicit consent) using a laptop with a web browser
and microphone. Learners can then train the model using Google’s
free Colab environment [30] and deploy it in a TinyML device
using TensorFlow Lite for Microcontrollers [31] or another open-
source software technology. This approach allows small keyword-
spotting models (about 16KB) to run efficiently on low-cost, highly
constrained hardware (less than 256KB of RAM).

3.3 TinyML for Expanding Access

The most difficult task in expanding applied-ML access is making
low-cost hardware available anywhere. Cloud-ML technologies cost
thousands of dollars, and their physical power, scale, and opera-
tional requirements limit their accessibility. Mobile-ML devices are
more affordable and pervasive, but their availability is still limited
because of network-infrastructure requirements and other factors.

Research shows that although smartphones have become more
affordable, their cost remains a barrier in many low- and middle-
income countries (LMICs) [32]. Statista estimates only 59.5% of
the world’s population has Internet access, with large offline pop-
ulations residing in both India and China [33]. According to Pew

Just because a trained model performs well on a test data set does not automatically
mean it will perform well in the real world.

Widening Access to Applied Machine Learning with TinyML

Collect
Data

Preprocess

Data

Fundamentals of TinyML
Loss Function Data augmentation
Classification ~ Gradient Descent Regression
Preprocessing o ponsible Al

Neural Network Validation data

Applications of TinyML

~—

144

Keyword
Spotting

Visual Wake
Words

176

=
Q
(%]
-
3
(°]
]

e AR

Deploying TinyML

((Scaling TinyML Course 4

Convert
Model

Evaluate

Make

Optimize Inferences

Course 2

Course 3

Gesture
Recognition

Figure 4: The ML workflow from data collection to model training to inference. The spiral course design focuses on the neural-
network model in Course 1, model application in Course 2, application deployment in Course 3, and, finally, TinyML-model

management and scaled deployment in Course 4.

Research, 76% of individuals in advanced economies have smart-
phones compared with 45% in emerging economies. Last in the
latter group is India, where only 24% of the population has a smart-
phone [34]. Students and teachers in many developing countries
lack the resources necessary to learn and use traditional ML.

In contrast, TinyML devices are low cost and pervasive. They
are readily accessible, enabling hands-on learning anywhere in the
world, and their portability eases demonstration of the complete
applied-ML workflow in a realistic setting. Furthermore, TinyML ap-
plications are more numerous and easier to deploy than mobile-ML
and cloud-ML applications. However, despite the wide availability
of tiny devices, there is little material for teaching TinyML (see Fig-
ure 3). The number of general-ML courses far exceeds the number
of TinyML courses (or, more generally, embedded-ML courses).

4 APPLIED-TINYML SPECIALIZATION

We developed an applied-ML course specialization focusing on
TinyML. Our specialization provides multiple on-ramps to enable
a diverse learner population. Moreover, because TinyML is easy
to deploy on hardware and test in the real world, it allows us to
systematically explore applied ML’s vast design space (algorithms,
optimization techniques, etc.). It also lets us incorporate responsible
Al in all four ML stages: design, development, deployment, and

management at scale, which we discuss in greater depth in Section 5.
We hope our description of this applied-ML specialization serves
as a roadmap for anyone wishing to adopt the program.

4.1 A Four-Course Spiral Design

The TinyML specialization comprises three foundational courses
and one advanced course, which we consider optional. Participants
would ideally start with the first course and work through the
natural progression, but we allow them to go in any order they
choose. Depending on their background, they can skip some courses
and take the one most relevant to their knowledge and expertise.

As we mentioned earlier, our application-focused spiral design
covers the complete ML workflow, going outward from the middle.
The curriculum begins with neural networks for TinyML in Course
1, expands to cover the details of TinyML applications in Course
2, deploys full TinyML applications in Course 3, and application
management and scaled deployment in Course 4 (Figure 4). Our ap-
plication focus increases learner engagement and enthusiasm [35],
and our spiral design increases the technical depth over time while
reinforcing the main concepts, providing multiple on-ramps and
eventually enabling students to create their own TinyML applica-
tion and deploy it on a physical microcontroller.

Widening Access to Applied Machine Learning with TinyML

Course 1: Fundamentals of TinyML

Course 2: Applications of TinyML

1.1. Course 1 Overview 2.1. Course 2 Overview 3.1. Course 3 Overview
1.2. The Future of ML Is Tiny and Bright 2.2. AlLife Cycle and ML Workflow 3.2. Getting Started
1.3. Tiny Machine Learning Challenges 2.3. ML on Mobile and Edge Devices (Pt. 1) 3.3. Embedded Hardware and Software
1.4. Getting Started With ML 2.4. ML on Mobile and Edge Devices (Pt. 2) 3.4. TensorFlow Lite Micro
1.5. The ML Paradigm 2.5. Keyword Spotting (KWS) 3.5. Deploying Keyword Spotting
1.6. The Elements of Deep Learning 2.6. Data Engineering 3.6. KWS Custom-Data-Set Engineering
1.7. Exploring ML Scenarios 2.7. Visual Wake Words (VWW) 3.7. Deploying Visual Wake Words
1.8. Building a Computer-Vision Model 2.8. Anomaly Detection 3.8. Gesturing Magic Wand
1.9. Responsible Al Design 2.9. Responsible Al Development 3.9. Responsible Al Deployment
1.10. Summary 2.10. Summary 3.10. Summary

Course 3: Deploying TinyML

Course 4: Scaling TinyML

4.1. Course 4 Overview 4.5. Neural Architecture Search (NAS) 4.9. Responsible AT Management
4.2. Profiling TinyML Systems 4.6. Machine Learning Operations (MLOps) 4.10. Summary

4.3. Benchmarking TinyML Systems 4.7. TinyML as a Service (TinyMLaaS)

4.4. Micro NPUs & Hardware Acceleration 4.8. Federated Learning for TinyML

Table 2: A breakdown of topics in the four TinyML courses. Each one has several activities, including videos, colabs, hands-on
labs, quizzes, readings, assignments, tests, and discussion-forum participation. For a detailed overview of the program as well
as links to the course materials, visit our courseware Github: https://github.com/tinyMLx/courseware

Table 2 shows a breakdown of the courses. Roughly, each one
takes five or six weeks to complete. For a more detailed and up-to-
date overview and links to all course materials, visit our courseware
Github at https://github.com/tinyMLx/courseware.

4.2 Fundamentals of TinyML (Course 1)

Course 1 is titled Fundamentals of TinyML. Its objective is to en-
sure students understand the “language” of (tiny) ML so they can
dive into future courses. TinyML differs from mainstream (e.g.,
cloud-based) ML in that it requires not only software expertise
but also embedded-hardware expertise. It sits at the intersection of
embedded-ML applications, algorithms, hardware, and software, so
we cover each of these topics. As Figure 4 shows, the course focuses
on a portion of the complete ML workflow. Moving to subsequent
courses, we progressively expand participants’ understanding of
the rest of that workflow.

The course introduces students to basic concepts of embedded
systems (e.g., latency, memory, embedded operating systems, and
software libraries) and ML (e.g., gradient descent and convolution).
The first portion emphasizes the relevance of embedded systems to
TinyML. It describes embedded-system concepts through the lens
of TinyML, exploring the memory, latency, and portability tradeoffs
of deploying ML models in resource-constrained devices versus
deploying them in cloud- and mobile-based systems.

The second portion goes deeper by focusing on the theory and
practice of ML and deep learning, ensuring all students gain the
requisite ML knowledge necessary for later courses. Through hands-
on coding exercises, students explore central ML concepts, training

their own ML models to perform classification using Python and
the TensorFlow library in Google’s Colaboratory programming
environment.

We provide an overview of embedded systems and ML to ensure
students recognize that the topics we cover in the specialization
are relevant to their lives and careers, boosting motivation and
retention [36, 37]. For those with sufficient ML and embedded-
systems experience, Course 1 is optional. By designing the series
with these multiple on-ramps, we can meet participants wherever
they are, regardless of their background and expertise.

4.3 Applications of TinyML (Course 2)

The objective of the second course is to give learners the oppor-
tunity to see practical (tiny) ML applications. Nearly all such ap-
plications differ from traditional ML because TinyML is all about
real-time processing of time-series data that comes directly from
sensors. As Figure 4 shows, we help students understand the com-
plete end-to-end ML workflow by including additional stages, such
as data preprocessing and model optimization. Moreover, when we
revisit the same stages (e.g., model design and training), we employ
spiral design to broach advanced concepts that build on Course 1.

Course 2 examines ML applications in embedded devices. Par-
ticipants study the code behind common TinyML use cases, such
as keyword spotting (e.g., “OK Google”), in addition to how such
front-end, user-facing, technologies integrate with more-complex
smartphone functions, such as natural-language processing (NLP).
They also examine other industry applications and full-stack topics,

https://github.com/tinyMLx/courseware
https://github.com/tinyMLx/courseware

Widening Access to Applied Machine Learning with TinyML

including visual wake words, anomaly detection, data-set engineer-
ing, and responsible Al

We take an application-driven approach to teaching the techni-
cal components. For example, we use the keyword-spotting (KWS)
example to demonstrate the importance of preprocessing sensor
inputs, showing the power of FFTs [38] and MFCCs [39] through
coding exercises. We additionally explore the importance of holis-
tic architecture by discussing the QoS metrics that evaluate KWS
applications and the “cascade architecture” (i.e., ML models staged
one after another for efficiency) for deploying them [40]. As an-
other example, through the lens of the visual wake words (VWW)
application, we introduce transfer learning [41], teaching students
to develop their neural-network models without voluminous train-
ing data and expensive hardware. Supplementing the theoretical
concepts is a coding exercise that employs transfer learning on a
pretrained MobileNet [42] model to detect whether an individual is
wearing a mask—a real-world application that will resonate with
learners in light of Covid-19. As a final example, we use anom-
aly detection (AD), in the context of predictive maintenance for
manufacturing, to demonstrate the power (and limitations) of su-
pervised learning and deep neural networks by exploring k nearest
neighbors [43], an unsupervised traditional-ML technique, and com-
paring it with autoencoders [44], an unsupervised neural-network
technique.

The course not only teaches students about TinyML applications
and their technical components, but also how to run and test these
applications using TensorFlow Lite in Google’s Colaboratory pro-
gramming environment. This step completes the second learning
spiral, providing a hands-on opportunity to explore full TinyML
applications. The inclusion of TensorFlow Lite lets participants
explore important TinyML topics (e.g., neural-network quantiza-
tion), preparing them to add the next layer in Course 3: physical
hardware. We intentionally avoided introducing microcontroller
hardware until the third course so students could complete the first
two entirely for free. They can then make an informed decision on
whether to buy the low-cost hardware that Course 3 requires.

4.4 Deploying TinyML (Course 3)
Most instructional ML material focuses on models and algorithms,
failing to provide hands-on experience in gathering input or train-
ing data, making decisions on the basis of a model’s output, and
testing models in the real world. Therefore, Course 3 explicitly
focuses on demonstrating the complete ML workflow (Figure 4).

We have found that learners are excited about using the knowl-
edge they gain to solve real problems. But absent guidance in how
to build an entire system, many become frustrated because they are
unable to apply their knowledge. This issue arises in the form of
questions that traditional courses leave out, such as “How can I find
the training data for my problem?” and “What threshold should I
use to decide whether a classification score is high enough for my
application?” and “How do I go from an RGB-camera-image byte
array to the float-tensor image my model needs?”

Providing universally applicable answers to all such questions is
impossible. But alerting early learners to them and offering a set

of comparable guided practical experiences reduces the frustration
before these questions arise in their projects, hobbies, or careers.
This is critical, as frustration squelches the desire to master the skills
a field requires. Instead, we want to give students the support and
confidence they need to overcome challenges and solve problems.

“Deploying TinyML” mixes computer science and electrical engi-
neering. It gives participants fundamental knowledge and hands-on
experiences with ML training, inference, and deployment on embed-
ded devices. Following the spiral pattern, it builds atop many of the
techniques and applications from previous courses and adds new
technical topics and extensions. Students develop and deploy full
applications, such as KWS, person detection, audio/visual reaction,
and gesture detection on their own microcontrollers.

The course introduces TensorFlow Lite for Microcontrollers [31],
an embedded-ML software library that eases the task of efficiently
running ML models on embedded hardware. Students learn how
the library works, helping them appreciate the challenges that an
embedded-ML-framework engineer faces in the real world. They
also examine the library’s APIs as they deploy applications such as
KWS, VWW, and magic wand to their microcontrollers.

Building on the concepts from the first two courses, we introduce
new concepts such as multitenancy—that is, running more than
one ML model at a time—when we revisit certain stages of the ML
workflow (Figure 4). We present the tradeoffs between using mul-
timodal learning that fuses sensor data versus using two separate
models to make inferences. The former stresses the first half of the
ML workflow (training), while the latter stresses the second half
(deployment).

A unique benefit of this course is the exercises that involve the
entire ML process. Before they know it, students are implementing
an entire TinyML application from beginning to end on a physi-
cal device they can hold in their hands. This approach gives our
course the unique value of allowing participants to fully develop
and use their own TinyML projects at home. This type of hands-on
project-based learning is proven to enhance learning, motivation,
and retention [47, 48]. For instance, participants collect their own
custom keyword data for training a KWS model, giving them first-
hand experience with the challenges of getting ML models to work
accurately. Some find that the tinyConv [49] KWS model works
well; others find that they must collect more data or adjust the pre-
processing. A few individuals in this latter category are perplexed
that even those improvements may fail to dramatically increase
accuracy, finding that the 16 KB KWS model is too small. The point
of the exercises is not necessarily to increase model accuracy, but
to instead understand the challenges of applying ML models to the
real world.

The course uses the Tiny Machine Learning Kit, which we co-
designed with Arduino for hands-on, low-cost, accessible, project-
based learning. This kit, shown in Figure 5, is globally accessible,
and includes an Arduino board containing numerous sensors (mi-
crophone, temperature, humidity, pressure, vibration, orientation,
color, brightness, proximity, gesture, etc.) that enable a wide range
of TinyML applications. More importantly, it has a popular Arm
Cortex-M-class microcontroller [50] that binds the learning experi-
ence to reality. The kit provides everything a student needs to build

https://store.arduino.cc/usa/tiny-machine-learning-kit

Widening Access to Applied Machine Learning with TinyML

e o
T ce e
TensorFlow Lite g/ @/ @/ ®
o @
Processor
1/0 (USB) + Bluetooth

Microphone

Temperature
+ Humidity

Figure 5: Shown at left, the TinyML Kit includes the Arduino Nano 33 BLE Sense [45], an OV7675 camera module [46], and
a TinyML shield that simplifies sensor integration. Shown at right, the Nano 33 BLE includes a host of onboard integrated
sensors (e.g., temperature/humidity, IMU, and microphone), a Bluetooth Low Energy (BLE) module, and an Arm Cortex-M
microcontroller that can run neural-network models using TensorFlow Lite for Microcontrollers.

TinyML applications for image recognition, audio processing, and
gesture detection.

After completing Courses 1, 2, and 3, students are eligible to
receive the HarvardX/edX Tiny Machine Learning Certificate, testi-
fying they are trained as full-stack TinyML engineers. We offer the
certificate because many professional learners desire such awards
to enhance their resumes and prove to potential employers that they
have mastered particular skills. At this point in the series, partici-
pants have not only explored the technical and societal challenges
that TinyML poses, but they have also gained hands-on experience
with the complete TinyML-application pipeline: collecting data,
developing and training models in the cloud using TensorFlow,
testing them in the cloud using TensorFlow Lite, and deploying
them in hardware with TensorFlow Lite for Microcontrollers.

4.5 Scaling TinyML (Course 4)

The first three courses bring learners up to speed on designing, de-
veloping, and deploying TinyML applications on a device. Course
4 builds on this foundation and considers scaled management of
TinyML-application deployments. This advanced course covers
two aspects of scaling. The first half focuses on “scaling up” the
effectiveness of individual TinyML applications through perfor-
mance benchmarking, model optimization, and hardware/software
co-design. The second half focuses on “scaling out” TinyML appli-
cations from one device to thousands.

In the scaling-up portion of the course, we start by introducing
the concept of system-performance profiling through TinyMLPerf [51]
and other open-source, industry-standard benchmarks. Because
embedded systems deal with sensor data in real time, the TinyML
device must be able to keep up with the data rates. In safety-critical
systems, such as automobiles, a slow response to new sensor inputs
can be life threatening. Knowledge of benchmarking principles is
therefore essential; it enables applied-ML engineers to compare ML

systems in a fair and useful manner and to make informed decisions
when selecting a device for a particular task.

Next, given a suitable system, we discuss the art of picking a
suitable model, emphasizing when and whether to be more code-
centric (improve the model) or data-centric (improve the data set).
The most accessible means of decreasing model latency is to change
the neural-network architecture. Students can accelerate inference
without changing any code by designing a new model that is suf-
ficiently accurate yet requires fewer calculations. But designing
ML-model architectures is difficult and time consuming because
of the many decisions that affect model quality and latency: what
type of neural network to choose, what size to make it, how many
hidden layers and neurons to include, how to best initialize the
network, and so forth. Fortunately, services have emerged to help
design network architectures automatically. Cloud services such
as AutoML [52] and techniques such as neural-architecture search
(NAS) [53] allow even developers with limited ML expertise to
quickly train high-quality models that meet their needs. In TinyML,
such services are essential because achieving efficiency means co-
designing the MCU hardware, software, and models, a challenging
task for humans. The course therefore introduces concepts such
as AutoML and NAS, explaining the fundamentals so students can
employ high-level automation tools with confidence.

The second half of the course focuses on “scaling out” TinyML
applications from one device to thousands. Applied-ML engineers
must know how to manage such deployments as a production
ecosystem may involve hundreds or thousands of devices. We thus
offer a preview through the TinyML lens. We start by leverag-
ing “ML operations” (MLOps) to develop, monitor, and improve a
TinyML application. MLOps automates the complete workflow (Fig-
ure 4) as Figure 6 shows. We discuss ways to automatically manage
and process data, train ML models, version them, and evaluate, com-
pare, and deploy them, all from the perspective of complete MLOps

Widening Access to Applied Machine Learning with TinyML

Data
o AutoML
; MLOps
Device m P NAS 23

Testing

Figure 6: Scaling TinyML through MLOps.

platforms. This approach introduces the advantages of an auto-
matic ML workflow, which include managing the overwhelming
complexity of ML deployments, reducing the burden of maintaining
in-house ML knowledge, being more scientific, easing long-term
maintenance, and ultimately improving the model’s performance
in the field.

In addition, we also introduce TinyML as a service (TinyMLaaS),
which allows production ecosystems to easily manage and inte-
grate heterogeneous TinyML devices. Because embedded TinyML
devices are specialized—from the ML compilers to the operating
system and ML hardware—to achieve ultra-low-power energy effi-
ciency, a highly fragmented ecosystem can result. Fragmentation
limits a precompiled ML inference model’s portability when the
hardware changes. The model then requires recompilation for a
particular device, leading to deployment complexity. To reap the
efficiency benefits of hardware heterogeneity while coping with the
fragmented ecosystem, we need a new “as-a-service” abstraction.
To this end, we introduce learners to TinyMLaaS$ [54], a general
method for tailoring an ML inference model to a specific device.
It is a software abstraction layer that gathers information about
the target device—such as the CPU type, RAM and ROM sizes,
available peripherals, and underlying software—to generate the
correct compiled inference model. The designated device then au-
tomatically downloads this generated inference model, and the
process repeats for all other devices. Because TinyMLaa$S enables
firmware-over-the-air (FOTA) and software-over-the-air (SOTA)
updates, it introduces privacy and security concerns for both the
model and the data. Hence, we also cover how large device net-
works can train models while maintaining user privacy through
federated learning [55].

Participants who complete the four courses will have learned all
the fundamentals of ML-model design, development, deployment,
and management through the TinyML lens. This knowledge is
invaluable for career advancement in this quickly emerging field.

@ e =
Readings
Y= Discussion
@ Colabs Forums
[D
@ — Assignments
Hardware
Quizzes [t D
eployments
gl@ AN ploy
v =
v= Tests
®x =
—/

Figure 7: We employ a wide array of learning activities to
give students an immersive, self-paced online experience.

4.6 Student Activities

People learn differently [56]. To support many learning styles, we
implemented proven strategies [57] and a variety of methods (Fig-
ure 7). Our approach mixes video lectures, short readings, and cod-
ing exercises in Google’s Colaboratory programming environment
to teach and reinforce the course’s main technical components.
Thus, visual, auditory, and experiential participants all learn by
their preferred method.

We keep the videos short (4-10 minutes). Research shows that
people learn better from numerous short content modules than
from a few long ones [58]. Because some students will find that
many of the coding components are new, we provide walk-throughs
of major sections, numerous comments describing the code, and
introductory text to explain the purpose of each code snippet.

In the first two courses, each section builds toward a coding as-
signment in Colaboratory to encourage project-based exploration
and creativity. The assignments in Course 3 expand to full-on hard-
ware deployment that lets students hold their own designed, trained,
and deployed model in their hands and test it in the real world.

The activities grow in complexity and detail as students progress
through the courses, following our spiral-design principle. Students
thus gain confidence throughout, as complete application deploy-
ments can be challenging. Finally, we sought the input of industry
veterans on our course staff to ensure the hands-on activities build
relevant full-stack skills.

The courses also include formative multiple-choice quizzes through-
out, focusing on the main concepts so students see their progress
even if they do not understand every line of code. The quizzes also
reinforce the importance of high-level tradeoffs and applied-ML
concepts, which will be relevant to ML careers even if the techni-
cal stack changes. For those pursuing a paid certificate, we also
included summary tests at the end of each section.

Finally, we provide many discussion forums that allow students
to ask questions and get answers. Forums allow the course staff
to support all participants regardless of their location. They also
serve the dual function of building a community around the course.
Our forums encourage students to ask any and all questions and to
answer them for one another.

Widening Access to Applied Machine Learning with TinyML

Each activity includes a strong ethics component, which we de-
scribe in detail later (Section 5). Briefly, however, we ask many
open-ended questions to elicit student opinions on the opportu-
nities and challenges of responsible TinyML-application design,
development, and deployment. As the literature predicts [57], many
of these questions have led to conversations and debates between
our online participants, despite their different geographic locations,
ages, and technical backgrounds.

4.7 Accessible, Hands-on Learning

To enable hands-on learning anywhere in the world, we need a low-
cost, self-contained yet extensible, approachable yet representative,
flexibly abstracted, and globally accessible TinyML platform. Once
again, microcontrollers are promising because they are inexpensive
and widely available. So, to provide an easily accessible out-of-the-
box experience, we custom designed the Tiny Machine Learning
Kit (Figure 5) with Arduino. This section describes the kit and its
development.

Systematic selection. The range of TinyML hardware and soft-
ware options is wide, but we believe an ideal solution is fully self-
contained yet extensible, approachable yet representative, and flex-
ibly abstracted. As such, we searched for one that not only made
it simple to integrate the sensors required for the course but also
supported easy integration of additional sensors for future study.

Putting application-level software aside leaves two fundamental
elements: hardware, from the microprocessor to peripherals and
discrete circuitry, and software, from the application layer (our
focus) to the silicon layer. An initial constraint on the field of po-
tential microprocessors is the need to support TensorFlow Lite for
Microcontrollers [31], which is written in C++ and requires that
the microcontroller support 32-bit computing.

We developed criteria for compatible microcontroller develop-
ment boards, recognizing that an integrated off-the-shelf product
would greatly increase accessibility. These criteria include a small
form factor (it is tiny ML, after all), a low power budget (efficiency
is critical to edge computing), a small system memory (some con-
trollers have large memories, making them less accessible and lim-
iting their range of application), sufficient clock speeds, wireless-
communication capability (to enable periodic reporting and/or dis-
tributed systems), select sensor integration, and serial channels
for extensibility. We defined similar criteria for the accompany-
ing software, comprising the development environment, embedded
framework, and logistics (fast, reliable distribution). Next, we added
weights to the selection criteria and compiled the candidates in a
Pugh matrix [59]. We ranked a field of about two dozen hardware
products, giving some preference to controllers that had undergone
more-extensive testing—in particular, Arm’s Cortex-M series [50]
and Espressif Systems’ products (namely, the ESP32t) [60]. Both of
these embedded systems are widely popular.

The TinyML kit. Ultimately we selected the Arduino Nano
33 BLE Sense [45] because it uniquely blends expert embedded-
systems engineering and remarkable isolation of the application
developer from many low-level hardware details [61]. Furthermore,
the Arduino framework and its software APIs (“cores”) fit naturally

10

with our spiral design. Arduino’s many libraries and simple IDE are
easy for inexperienced students to learn, yet it typically permits
those interested in the “bare metal” to work their way down the
embedded-software stack. Moreover, the Nordic nRF52840 Cortex-
M4-based controller [62] on the Nano 33 BLE Sense development
board, along with its Mbed real-time OS [63], represent industry-
level hardware and software.

We also developed the Tiny Machine Learning Shield to enable
plug-and-play integration of sensors that the Nano 33 BLE Sense
lacks. In particular, it eliminates the need for users to make 18 indi-
vidual connections between the microcontroller and the low-cost
camera module we selected for the course—the OV7675 [46], which
typically sells for about US$2. A series of Grove connectors [64]
line each side of the shield for connection to numerous additional
sensors, which students can purchase for their own projects and
integrate without soldering or low-level circuit design.

We bundled the Nano 33 BLE Sense with the shield, the OV7675
camera module, and a USB cable to form the Tiny Machine Learning
Kit (Figure 5); learners can purchase a single item and be fully
prepared for Course 3 for US$49.99. To accommodate those few
who prefer to purchase elements individually, we provide wiring
diagrams and a custom Arduino software library so they can readily
swap the OV7675 for the related OV7670 camera module.

Alternatives. In the months after we developed and announced
our TinyML kit, similar boards emerged to provide alternative op-
tions. For example, the Pico4ML by ArduCam [65] is a notable
single-board example that comes complete with a microphone, iner-
tial measurement unit (IMU), and camera module, and is suitable for
the course exercises. We are working to support some of these new
and exciting hardware platforms to give students more flexibility
with their projects.

5 ETHICAL & RESPONSIBLE Al

Ethical and Responsible Al is about putting people, social benefit,
and safety first. More specifically, ethical Al emphasizes the need
for ML engineers to safeguard user privacy and security, mitigate
algorithmic bias and discrimination, and ensure ML models perform
reliably after deployment. It also extends to developing consumer
trust. In this section, our goal is to shift learners from thinking
about which ML technology is feasible to which is useful, with an
understanding of how it will influence users and society.

5.1 Ethical Consideration of Ubiquitous ML

TinyML offers many helpful features, ranging from data privacy and
security to low latency and high availability. Coupled with low-cost
embedded hardware, these features make it a pervasive technology
that can enable ML everywhere. TinyML sensors will monitor the
environment in which they are deployed, be it mechanical or human,
around the clock. With the prospect of ML everywhere comes a
pressing need to address privacy, drift, bias, and other ethical issues.

Fortunately, TinyML allows us to incorporate responsible Al
into all four ML stages: design (Course 1), development (Course
2), deployment (Course 3), and scaling (Course 4). By embedding

Widening Access to Applied Machine Learning with TinyML

ethics into each TinyML course, we communicate the technology’s
ethical and social dimensions in a personal and practical manner.

To achieve deep integration, we follow the Embedded EthiCS
pedagogy at Harvard [66], where philosophers participate directly
in computer-science courses to teach students how to think through
the ethical and social implications of their work. We collaborated
with a philosopher from this program to co-develop and include
such material in our curriculum. Her commitment to learning the
technical aspects of TinyML enabled us to customize the ethical
content to meet the unique course needs of TinyML.

By distributing responsible Al throughout the series, covering
the entire ML workflow, students discover how ethical issues per-
meate all aspects of their work. Our aim is to introduce them to
the conceptual tools for navigating these issues, in hopes they will
view responsible Al as an active enterprise. Next, we describe our
pedagogical goals for each responsible-Al unit, some examples we
covered, and the exercises that reinforce the concepts.

5.2 Designing Al Responsibly (Course 1)

Access to, adoption of, and use of ML products is inequitably dis-
tributed. According to Pew Research, 64% of Americans believe
technology companies create products and services that benefit
people who are already advantaged, and 65% believe these compa-
nies fail to anticipate the societal impact of those offerings [67].

To enable more-widespread, safer, and more-secure ML, we must
raise awareness of its capabilities. Thanks to the low cost and acces-
sibility of TinyML hardware, our students are diverse, and they will
probably have to address different social and cultural factors when
designing ML applications. To ensure they all can anticipate the
effects of ML products and ensure equitable access, our approach
to responsible Al focuses on forming a vision of both the problem
to be solved and the people a solution will affect.

We believe that by taking an active role in responsible ML design,
students will be better able to address ethical challenges such as
bias, fairness, and security. We therefore cover real-world examples,
such as a Winterlight Labs auditory test for Alzheimer’s disease.
In this case, research revealed that nonnative English speakers are
more likely to be mistakenly flagged as having Alzheimer’s [68]. Ina
discussion forum, students reflected on what the product designers
could have done differently to avoid this failure. Such activities
reinforce the importance of considering diverse user perspectives
during the design phase, as doing so can inform data-collection
decisions that mitigate ML bias.

In a subsequent forum, learners practice ethical reasoning about
the consequences of a KWS model’s failure in terms of Type I (false
positive) and Type II (false negative) errors. In this case, a false
positive would result in audio being recorded, unbeknownst to
the user, and sent to the cloud. A false negative means the device
failed to activate when the user spoke the wake word. Students
must justify their decision to optimize the model for high precision,
thereby minimizing false positives, or to optimize for high recall,
thereby minimizing false negatives.

11

For the KWS activity, nearly all participants chose to optimize for
high precision to minimize the risk of privacy violations. Interest-
ingly, one provided a justification based on sustainability concerns
related to unnecessary data transmission and storage in the cloud.
Those who decided to optimize for high recall cited a variety of
reasons. One noted that although people claim to value privacy,
they tend to prioritize convenience. In contrast, another suggested
enacting privacy measures elsewhere to offset the potential harm
of optimizing for high recall. Lastly, yet another student prioritized
model performance to meet user expectations. That student claimed
the burden of preserving privacy should fall on the user, who has the
ability to decide whether to purchase the product. There is no right
or wrong answer. Our desire is to spur self-reflection and foster
constructive discussion among learners from different backgrounds
and cultures.

5.3 Developing AI Responsibly (Course 2)

Any developer employing ML must be aware of how data-collection
bias and fairness affect application behavior. Our courses use pub-
lic data sets, including Speech Commands [69], Mozilla Common
Voice [70], ImageNet [29], and Visual Wake Words [71], for nearly
all of the programming assignments. Most data sets, however, have
demographic-representation problems [72]. For example, despite
crowdsourcing efforts to increase diversity, the Common Voice data
set lacks equal gender representation (only 24% of English-data-set
contributors who revealed their gender are female) [73].

Our goal is for students to see how data collection, bias, and fair-
ness intertwine, as well as to equip them to mitigate the problems.
because they are working with KWS models, we cover real-life bi-
ases relevant to this kind of ML application. For instance, research
shows that voice-recognition tools struggle to identify African
American Vernacular English, causing popular voice assistants to
work less well for black individuals [74]. Similarly, research shows
that voice recognition struggles to identify nonnative English speak-
ers and those with speech impairments [75]. To acquaint learners
with recent work in mitigating bias, we discuss Project Euphonia,
a initiative that launched in 2019 with the goal of collecting more
data from individuals with speech impairments or heavy accents
to fill the gaps in voice data sets [76].

We created a Colab activity that uses Google’s What-If Tool
(WIT) [77], based on its Responsible AI tool kit [78]. The WIT is
one of the company’s many open-source, interactive visualization
tools for investigating trained-ML-model behavior with minimal
coding. In this exercise, participants practiced ethical reasoning
by exploring a real-life data set, identifying sources of bias, and
evaluating threshold-optimization strategies for fairness. For the
WIT activity, students noted how the visual representations fostered
a deeper understanding of issues pertaining to fairness. One claimed
that the focus on confusion matrices in particular was an effective
way to clearly distinguish between the fairness metrics. In general,
learners appreciated the opportunity to try out the WIT.

Widening Access to Applied Machine Learning with TinyML

Malicious

Attack

Static Noise

Figure 8: Students attack a pre-trained KWS model with ma-
licious static noise and trigger a spotting of the keyword
"yes,' showing them the importance of security and privacy.

5.4 Deploying Al Responsibly (Course 3)

Even after designing and developing an ML model, deployment
raises a new set of ethical challenges. For example, TinyML systems
are often touted for preserving privacy. When an embedded system
processes data locally (close to the sensor) rather than transmitting
it to the cloud, we tend to believe it protects user privacy. But
user interaction with the model raises new privacy and security
concerns [79]. Moreover, ML interacting with a dynamic real-world
environment using sensors raises concerns about model drift? over
a product’s lifetime.

To the extent that TinyML enables ML everywhere, the privacy,
security, and even model-drift risks could be more widespread
compared with traditional ML. To familiarize students with these
risks, we cover real-life examples, such as doorbells that share
data with law enforcement [80] and fitness devices that leak user
information [81].

Our goal is to equip students with strategies to mitigate these
risks when deploying trained models in embedded devices. Impor-
tantly, the mitigation strategies available to traditional ML systems
are sometimes unattractive or infeasible for TinyML. For instance,
the resource constraints of an embedded device, such as low power
and small memories, complicate implementation of robust security
systems and model retraining. Therefore, we acquaint course par-
ticipants with a wide array of strategies, such as minimizing the
transmitted and stored data to preserve user privacy, minimizing
hardware design to limit vulnerability to attackers, and running su-
pervised experiments in the real world before releasing ML models.

Inspired by research showing we can use inaudible ultrasonic
noise to trigger or eavesdrop on KWS models [82], we created
an exercise that gives students hands-on experience attacking a
KWS model. They trigger a false positive—“yes”—with seemingly
innocent but adversarial static noise (Figure 8), which in a real
application would cause the system to constantly record and trans-
mit the audio. This experience builds on our videos and readings
and makes the security threat real—a crucial part of any major
security-awareness program at large [83]. At the same time, it is
also a cautionary tale of ML’s limitations, a lesson all applied-Al
engineers should learn.

3 Model drift generally refers to prediction-accuracy degradation owing to environ-
mental changes.

12

To further reinforce this point, a subsequent discussion forum
allows course participants to practice ethical reasoning to deter-
mine when malicious triggering of a false positive can cause serious
harm. Some have noted that this vulnerability would be most likely
to cause harm where security is a paramount value, such as using
KWS to grant access to a secure space or to initiate a financial trans-
action. One student drew a connection to the practice of ethical
hacking, or penetration testing, and the possibility of developing
adversarial data for retraining the model to be more resilient. In-
terestingly, another noted that since users lack the ability to fix
security issues, their only option is to stop using the device. But
this choice ultimately depends on whether the company informs
customers about the vulnerability. Lastly, one student claimed the
adversarial example was more reliable than that student’s own voice
for triggering a “yes.” The course staff then responded, prompting
a discussion of data-set bias and the likelihood that American male
accents are overrepresented in the data.

5.5 Scaling AI Responsibly (Course 4)

Many ethical implications require consideration when applying
technology. Even minor biases, which can be difficult to detect in
the proof of concept, can have a major impact when appearing in
thousands or millions of devices.

This problem highlights the need to treat responsible ML as an
iterative process. Rather than introduce entirely new ethical con-
siderations, we revisit and expand on previous ones. For instance,
to guide students in cleaning up a test data set before they conduct
benchmarks, we revisit the ethical issues of data collection and bias.
Similarly, we revisit privacy in depth once participants become
acquainted with federated learning.

We are incorporating an active learning exercise using Google’s
Model Card Toolkit (MCT) [84]. Model cards are a reporting mech-
anism that can increase model transparency and facilitate the ex-
change of information between model creators, users, and others.
This exercise requires that students practice using the model-card
framework to document information relating to the model’s devel-
opment, performance, and ethical considerations.

We additionally discuss the environmental impact of large-scale
TinyML networks, as the production and maintenance of billions
of MCUs can have lead to substantial carbon emissions. Beyond
the ethical pitfalls of scaling TinyML, we cover the potential pos-
itive social impact this technology can have in domains such as
environmental sustainability, public health, and Al equity.

6 ACCESS VIA MOOCS

In this section we describe how we leveraged technology to make
the TinyML specialization broadly accessible and highlight im-
portant considerations made to ensure we supported our remote
learners.

6.1 Massive Open Online Course

Our goal was to reach a global audience. We therefore chose to
employ massive-open-online-course (MOOC) platforms. Examples
such as edX and Coursera are ideal for making the content globally

Widening Access to Applied Machine Learning with TinyML

accessible; students need not travel to a different country to learn.
These platforms host a wide variety of university-level courses and
are generally cheaper than equivalent academic and professional
training thanks to the economics of scale [85]. We deployed the
TinyML specialization on edX through HarvardX.

Participants can audit the course for free or pay to earn a pro-
fessional certificate. Since they can “upgrade” to a professional
certificate at any point during the course, both students and pro-
fessionals can try before they buy, encouraging more to enroll.
Although the professional certification includes summary tests that
are absent from the audit version, we designed the curriculum so
individuals who are just auditing learn the same crucial principles.
Thus, all can attend the entire class, developing their skills for free.
At the time of this writing, the number of auditors far outweighs
the number of paying students by more than order of magnitude.

The course is asynchronous and self-paced rather than instructor
led. Students progress through the material at whatever speed they
find comfortable. But unlike in-person courses, interaction between
students and staff is minimal, forcing staff to develop high-quality,
self-explanatory, and self-sufficient materials that rely heavily on
media (which we describe in greater detail in Section 6.2).

Unlike most MOOCs, Course 3 employs the TinyML kit (Sec-
tion 4.7) for hands-on learning. To maximize hardware accessibility,
we worked with Arduino to make a custom all-in-one kit globally
available for purchase through either that company’s website [86]
or one of its many distributors. We also provided a detailed bill
of materials for students who wish to buy individual components
instead. The main benefit of this approach is that it improves the ef-
ficiency for the host institutions (Harvard and Google) by reducing
the burden on them for managing inventory and shipping logistics
(taxes, international shipping rates, etc.).

6.2 Accelerated Remote Media Production

The typical development timeline for a series of online courses,
such as the ones we described in Section 4, is about two years—
far too long to keep up with changing ML technology. Applied
ML, especially in the context of TinyML, remains a nascent yet
quickly developing field. Therefore, media production for the online
curriculum must be rapid to ensure the material is timely and
relevant and to ensure broad access.

We compressed the media-production time greatly, achieving an
average development cadence of 6-8 weeks per course. To main-
tain this cadence, we created a custom remote-media-production
workflow. We produced the TinyML course under the specter of
Covid-19, but regardless of the safety limitations, a remote produc-
tion strategy would still have been the only way to achieve these
quick results. Remote production methods offer flexibility and allow
an international crew to make contributions, meaning the process
continues around the clock. Regardless, no matter when and how it
is done, creating a flexible workflow requires a principled content-
design approach, and advanced technology is necessary for rapid
progress. The following breakdown can serve as a roadmap for
others attempting to follow a similar approach.

13

Production design. To expand access such that our effort meets
the needs of a global audience (Section 2), we built our media-
production strategy around five critical ingredients: compelling
instructional narrative, best media practices for online learning, a
diverse and skilled production team, prioritized use of production
equipment, and willingness to innovate.

A compelling instructional narrative that whets student interest
is critical, as all great media experiences unite around a good story.
TinyML offers a sound narrative because it provides an accessible,
hands-on introduction to ML (Section 3). We aimed to communicate
with a global audience and provide the practical knowledge for
building complete, relevant TinyML applications and tools.

Effectively communicating that narrative requires best media
practices for online learning. Decisions made in postproduction of-
ten hold more weight than any others. For example, the decision of
when to show the instructor, slides, or both in a picture-in-picture
cut versus when to display graphics or other visual/auditory in-
formation can affect the viewer’s cognitive load and overall learn-
ing [87, 88]. When in doubt, Mayer’s “12 principles of multimedia
learning” [89] is an excellent place to discover such general prac-
tices for enhancing the student’s experience.

From the start, we determined the primary media types we would
produce to hold students’ attention and maintain their cognitive
load balance [87]. We chose picture-in-picture and split-screen
formats, allowing us to show the instructor or other imagery in
full-screen mode to focus on the most important aspects of the
presentation (Figures 9). We emphasized instructor screen time,
however, to improve student learning [90].

A geographically distributed and responsive team is necessary
to quickly produce highly sophisticated content, especially for an
emerging technical field. Our media team included a producer and
director to establish a creative vision and ensure media delivery, a
senior editor to assemble and craft the videos, a motion-graphics
designer to provide custom graphical elements for our brand, and a
production assistant to wrangle data, review content, and integrate
the final videos into the platform. This team was relatively lean. One
additional advantage was that contributors were scattered across
12 time zones (San Francisco to Boston to London to Mumbai),
meaning at all times someone was awake and working on the
project.

A crucial ingredient to quickly producing content is prioritized
use of production equipment. The remote nature of the production
and the Covid-19 precautions only heightened this need. For exam-
ple, webcams and audio supplies were sold out or on back order
because people were setting up home offices so they could continue
to work. Fortunately, we were able to make acceptable compromises
and buy equipment in a way that ensured the greatest impact. We
prioritized production-equipment purchases as follows: 1) audio,
because it is more important to retaining viewer attention than
video [91]; 2) lighting, as it can improve even a nonideal camera to
draw the student’s eye; and 3) video, which we mention last because
it is the most expensive in a context where higher production value
does not necessarily imply a better learning experience [58].

The final ingredient was willingness to innovate. Course 3 (De-
ploying TinyML) involves hands-on learning. Typically, in-person

Widening Access to Applied Machine Learning with TinyML

. . Focus in TinyML
Detecting Drift—Performance

cering

Model Deployment

(a) Picture-in-picture (b) Split screen

(d) Screencast

(c) Tri-frame for lab demos

Figure 9: We used various video-production strategies throughout the course to maximize learning efficiency. (a) Picture-in-
picture places a video clip in a small frame on top of another frame, playing them simultaneously. It enhances the perception
of instructor presence while showing the student relevant content. (b) Split-screen, a slight variation, also improves the percep-
tion of instructor presence. (c) Tri-frames are useful for lab demos to enable “hands-on” instruction from teaching assistants.
(d) Screencasts coupled with associated lecture material reinforce concepts with code.

teaching assistants (TAs) demonstrate labs to show students the
goals and scope and to preemptively troubleshoot common er-
rors. Doing the same online is extremely difficult. We developed a
three-way split-screen medium (Figure 9c) that displays the device
assembly, device testing, and TinyML lab exercises. We assembled
a new film location to (remotely) support the teaching staff with
the lab exercises, adding an overhead camera and additional light-
ing. Furthermore, we enhanced our visuals for the three-way split
screen with a custom motion-graphics layer. This setup reached
completion and underwent rapid testing without disturbing the
production timeline. From start to finish, Course 3 took only eight
weeks despite involving five hours of produced-video time, which
includes short lectures, screencasts, and lab videos.

Technology. Without globally accessible technology and ser-
vices, remote media production at the level and pace we achieved
would have been impossible. Cloud storage was the backbone of
our strategy. It allowed contributors to ingest and manage footage
globally. It was also the heart of our production workflow, giving
us the ability to sync media project files instantly. Videotelephony
services such as Zoom and Google Meet aided in assessing home-
studio setups in addition to serving as a virtual rehearsal stage and
writers’ room. Amazon supplied 90% of our equipment. Frame.io
streamlined our video-quality review and revision [92].

Copyright. Although on-camera presence was a major focus of
remote production, video lectures are just one part of the students’
activities. At the same time, a multidisciplinary team of content
experts, graphic designers, and web developers at HarvardX rapidly
designed and formatted readings and coding exercises. A major
challenge in quickly producing course materials was ensuring each
illustration, photo, and code library met strict licensing require-
ments to avoid copyright infringement. Given our project’s more
than two thousand graphics and tight timelines, we trained all con-
tent developers on proper sourcing for course materials. In-house
custom graphics—necessary for a nascent field—predominated, and
copyright specialists at HarvardX evaluated each piece as it arrived
to cite all external creators.

14

6.3 Building Community

A common and well-known pitfall of MOOC platforms is the diffi-
culty of developing community and fostering peer learning among
a geographically distributed population. Students often struggle to
discuss and collaborate after completing the course and even dur-
ing the course. We therefore developed the TinyMLx community,
which welcomes everyone beyond the edX platform.

First, we created a Discourse forum (discuss.TinyMLx.org) to
provide both a communication platform for students and a home
for future initiatives. It has been successful, garnering over 3,500
user visits and over 58,500 page views in its first five months. We
also conducted two live Q&A sessions for the TinyML commu-
nity. For each session, between 100 and 200 learners joined live
from around the world, and many more have since watched the
recording. We received dozens of questions leading up to the events
and dozens more during, with topics including how to best teach
TinyML material, how to improve diversity in TinyML, and many
others in between. Participants enjoyed the events, e.g., 90% of re-
spondents to our first post-event poll said they would like to attend
another. Finally, based on learner feedback we recently created a
Discord chat to further enable easy collaboration, communication,
and community building.

To challenge our Course 3 students, who went on to deploy
TinyML models on their microcontrollers, we developed an op-
tional “capstone-project” competition. We believe this competition
reinforces the value and usefulness of the technical skills that stu-
dents are gaining. A prize will go to the individual (or individuals)
whose project demonstrates technical mastery, is most creative in
its implementation, and has the most potential to improve society.
This initiative has already spawned collaborative-learning groups.

To increase the impact of these projects and further reinforce the
real-world applicability of the knowledge students gain through this
course series, we are working with the Arribada Initiative [93] to
create larger advised projects. This partnership will allow students
to contribute their newly acquired TinyML skills to real-world
conservation efforts, such as human/elephant conflict mitigation
and sea-turtle monitoring, while receiving advice and support from
both industry professionals and course staff. Finally, we are asking
the community to continuously improve the course, since it is as

discuss.tinymlx.org

Widening Access to Applied Machine Learning with TinyML

B Course 1 (Foundations of TinyML)
40000 { ™. Course 2 (Applications of TinyML)
g Course 3 (Deploying TinyML)
c
& 30000 -
—
kS
5 20000 -
Q
E .
2 100001
O 4
Q Q N N N
,LQ’L q ,Lg’l o ,.LQ’L ’ ,Lg’l ,LQ’L
o\ ¥ W e

Figure 10: Course-enrollment metrics for Courses 1 through
3. Over 43,000 students are currently enrolled across all
three courses. Course 4 has yet to open for enrollment. We
expect another enrollment spike with “Scaling TinyML”

much theirs as ours. As a result, we’ve seen many forum posts and
GitHub pull requests offering typo corrections, bug fixes, and even
content-improvement suggestions.

7 BROADER IMPACT

Our goal is to expand global access to applied ML through the lens
of TinyML. In this section, we assess our work’s initial impact by
presenting data from edX Insights, a service that provides course
statistics to instructors and staff. It is merely an initial impact assess-
ment, as the first cohort of participants have just begun graduating
from the core TinyML series (Courses 1-3), and Course 4 (optional)
remains in development. As such, our early analysis considers en-
rollment in the first three courses by geography, background, age,
and gender.

7.1 Course Enrollment

At the time of this writing, the total course enrollment stands at
43,000. Figure 10 shows the daily enrollment data, starting from the
opening date. We announced Courses 1, 2, and 3 together in early
October 2020 and launched them on October 27, 2020; December
16, 2020; and March 2, 2021, respectively. Students could enroll in
any or all courses at the same time but could only start after each
course’s launch date.

TinyML is a young field, so the first useful metric is interest in
the topic (i.e., acquiring applied-ML skills via TinyML). Figure 10
shows the strong and steady increase over time. On average, ~1,000
new students enroll in at least one course each week. Interest in
Courses 2 and 3 continues to grow—a phenomenon we attribute to
participants promoting them through social media such as LinkedIn,
Twitter, and Facebook as they earn their course-completion certifi-
cates. The sharp increases around the first week of October, third
week of December, and third week of February align with course-
announcement dates or major social-media activity. For instance,
on January 24, Mashable handpicked “Fundamentals of TinyML” as

15

Figure 11: Global access to TinyML courses. At the time of
this writing, people from more than 171 of the 193 United
Nations member states have participated in TinyML.

one of the 10 best free Harvard courses to learn something new [94].
TinyML ranked at the top of the STEM-courses listed.

Figure 11 shows that TinyML students come from more than 171
countries. Because edX reaches a wide audience, our learners come
from nearly all continents. Today, the top 10 countries by partici-
pant activity are the US, India, Turkey, the UK, Canada, Pakistan,
Germany, Brazil, Australia, and Indonesia.

7.2 Completion Rates

People take online courses for a wide variety of reasons. Some are
curious about the topic and want to get their feet wet; they may
audit a course but not complete it. Others would like to master the
program and earning a certificate of completion, assuming they
can afford it. Therefore, enrollment numbers alone are insufficient.
We assessed how many verified enrollees complete the course.
We have access only to the percentage who have earned a passing
grade among those officially enrolled in the courses (i.e., the paid-
certificate program). This number is constantly changing. At the
time of writing, the completion rates are 59%, 55%, and 44% for
Courses 1, 2, and 3, respectively. We believe Course 3’s number is
slightly lower because it is more challenging than Courses 1 and 2,
which do not have a hands-on component. The average completion
rate for most MOOCss is somewhere between 5% and 15% [95], so
the TinyML courses appear to be faring well. Although these results
are preliminary (we need more data to make better quantitative
comparisons), they shed a positive light on our design approach.

7.3 Learner Demographics

We conducted a demographic analysis of students’ age, educational
background, and gender. They volunteer this information to edX, so
it covers only a fraction of the numbers in Figure 10. Nonetheless,
the data is extensive enough that we can draw general conclusions.
At the start of each course, a forum post asks students to intro-
duce themselves and summarize what they hope to get out of the
edX series. We derived additional qualitative analysis from these
responses. So far we have a good distribution across age groups and

Widening Access to Applied Machine Learning with TinyML

30 40 50 60 70 80
Age

Figure 12: Age demographics across all courses based on
voluntarily provide information. We have learners who are
still in high school to learners who are retired and learning
TinyML to understand its impact on our global society.

1000 -

800 1

600 1

400 1

Number of Learners

200 1

0 . |I|||‘

10

20

6000 +

v

o

o

o
s

4000

3000 +

2000 +

Number of Learners

1000

Figure 13: Education demographics based on voluntarily
provide information. Many of our learners indicated an in-
terest in TinyML to understand applied ML technologies to
either pivot or grow further in their current positions.

educational backgrounds. Our gender diversity is lacking, however,
but we are working to address it (Section 8).

Age. Figure 12 shows the age distribution for all three courses
combined. The median is 30. Some participants are high-school
students as young as 15 and wish to pursue an ML career. Others are
over 60 and wish to understand the latest technological innovations
as well as their societal implications. This age diversity was one of
our objectives (Section 2).

Education. Figure 13 shows that nearly all our learners have ei-
ther just a secondary (high-school) diploma or a bachelor’s/master’s
degree. A few others have doctorate degrees. Judging from the fo-
rum discussions, we gather that individuals with a bachelor’s or
master’s degree are trying to advance or shift their careers by adding
an ML focus. Most participants with a doctorate want to apply (tiny)

16

10000 { mm Male
B Female
0 Other
@ 80001
c
3
- 6000 1
—
(o)
@
Qo 4000 A
£
=3
2
2000
O B
Course 1 Course 2 Course 3

Figure 14: Gender demographics based on voluntarily pro-
vide information. Collectively, we are working on engaging
a more diverse population of learners with the aid of work-
ing groups that are part of the tinyML Foundation.

ML in their research. Many students expressed enthusiasm about
enrolling in a career-advancing course backed by both Harvard and
Google. This variety of educational backgrounds and career focuses
also meets our expectations and objectives and further emphasizes
the importance of our academia/industry partnership (Section 2).

Gender. Figure 14 depicts the gender diversity across all three
courses. It weighs heavily toward men; on average, across all three
courses, 20% of our learners are women. We are working to change
that ratio through our open education initiative (Section 8). More
specifically, we are putting together a TinyML4Everyone working
group to encourage more women to learn about TinyML.

8 FUTURE DIRECTIONS

TinyML can dramatically transform applied-ML education and de-
velopment at many levels, far beyond what we achieved with the
edX specialization. To this end, we launched the Tiny Machine
Learning Open Education Initiative (TinyMLx) [96] to sponsor a
wide variety of initiatives, such as TinyML4D (for applied-ML edu-
cation via TinyML for developing countries), TinyML4STEM (for
nurturing creative research in science, technology, engineering,
and math), TinyML4Everyone (for building a shared identity and
breaking stereotypes), and TinyML4x (for your favorite topic x).
We are currently running the TinyML4D and TinyML4Everyone
working groups that are looking for ways to broaden TinyML par-
ticipation, access, and belonging. One way is to provide TinyML
materials in a student’s native language. For instance, we already
have two projects for developing course content and instructional
materials in Spanish and Portuguese [97]. Additionally, the makers
of TinyML on edX, along with students and faculty of Navajo Tech-
nical University in New Mexico, plan to conduct a workshop in June
2021 that teaches Navajo students the basics of hardware program-
ming and how to employ ML for their communities by creating
voice-activated applications trained on the Navajo language.
TinyML can be instrumental for inspiring youth, as it offers a
superb introduction to programming and ML for K-12 students.

Widening Access to Applied Machine Learning with TinyML

Deployment of TinyML applications on physical embedded de-
vices intrigues students by allowing them to interact with actual
technologies, not just on-screen representations. Our first step
in this direction was to publicly release all course materials on
our GitHub: https://github.com/tinyMLx/courseware. We are
working with STEM teachers worldwide to help us refine our tools
for the classroom. Our aim is to develop ready-to-go project-based
lessons and accompanying lesson plans to further increase ML ac-
cess by reaching younger children. One possible project is to enable
the use of visual programming abstractions (e.g., Microsoft Make-
Code editor for the Arduino Nano BLE Sense 33) so people of all
ages can apply ML without learning a programming language.

In addition, we are working with various organizations to assist
teachers in learning applied ML. The 2021 Backyard Brains Al
Fellowship [98], for example, is an early opportunity for teachers
to help design TinyML projects for classrooms.

9 LIMITATIONS

We believe TinyML is an effective means to widen access to applied
ML. Indeed, it is one way but not the only way. To provide a more
balanced viewpoint, we describe some limitations of our approach
and suggest alternative methods that may be more suitable.

Hardware cost. TinyML requires the purchase of embedded
hardware to acquire the full-stack ML-development experience.
The TinyML kit we developed costs US$49.99. In some developing
countries, this exceeds the average income in a week, in some rare
cases, even a month. Although this price is considered reasonable
in some countries, it may still be too high in others. We have found
that the cost of shipping to distant parts of the world depends
heavily on the presence of nearby distribution centers that carry
the device. If none exist, the kit’s cost, including shipping, can
sometimes double the original kit price.

Ideally, TinyML would require no physical hardware, making
the hardware cost zero. We are experimenting with open-source
emulation platforms such as Renode.io from Antmicro [99]. Renode
is an open-source framework that allows users to build and test
embedded (ML) software without physical embedded hardware.
It will enable developers to run their original code, which would
have run on the hardware, unmodified in an emulated environment.
Although this approach eliminates the hardware cost, students miss
the opportunity and excitement of interacting with a device.

Device accessibility. Globally, the number of embedded devices
far exceeds the number of cloud and mobile devices (as Figure 3
shows). But individuals must procure the necessary embedded hard-
ware, such as the TinyML kit that we have developed with Arduino,
to learn. By comparison, devices such as laptop and desktop com-
puters connected to the web benefit from easier access. Students
can use a regular computer to gain access to the online course
materials. Even if they lack immediate access to computers in their
homes, they can access the online resources from Internet cafés that
provide web access for a nominal fee. A crucial shortcoming of this
approach, however, is that learners will have difficulty experiencing
the complete ML workflow (Figure 4), since they will be unable to
deploy in a device the models they train in the cloud.

17

Smartphones may be a suitable compromise. They are highly
accessible, even though they can be an order of magnitude more
costly than the TinyML kit. Nevertheless, they enable students to
experience the complete TinyML design, development, deployment,
and management workflow. Also, an average smartphone has more
than 10 sensors—many more than the Arduino Nano 33 BLE Sense
we use in Course 3, enabling additional applications. Learners can
hold the smartphone in their hands, much like the TinyML device.
That said, conveying the significance of ML’s future being tiny
and bright (Section 3) is more challenging (though not impossible)
because mobile devices have far more resources (compute power,
memory, bandwidth, etc.) than TinyML devices (Table 1). Students
may therefore miss the fundamental issue of embedded-resource
constraints. But if the goal is ultimately to expand access to applied
ML, mobile devices may be a fair compromise.

Programming background. Building ML models for mobile
devices (using TensorFlow Lite [100]) or the web (using Tensor-
Flow.js [101]) is possible using high-level programming languages
such as Python and JavaScript, respectively. These languages are
easy to learn and far more accessible to beginners than C/C++,
which is necessary to program embedded hardware (similar to
Course 3). So although TinyML creates an opportunity to showcase
the full-stack ML experience using embedded hardware, and we
leverage the Arduino IDE and heavily scaffolded code with video
walkthroughs to minimize the lift to C/C++, it may also narrow
access in some regards. The additional necessary programming
skills and associated education can be a roadblock.

In the future, we believe that end-to-end developer platforms
such as Edge Impulse [102], that lower the entry barrier into TinyML,
will likely become mainstream and an essential part of the future
developer ecosystem. Not every embedded ML engineer must know
and understand all of the inner workings of TensorFlow Lite Micro
or how an ML compiler works or how to extract the best per-
formance from a highly customized ML hardware accelerator etc.
Instead, learners need the right level of abstraction that allows them
to focus on what matters most. Platforms such as Edge Impulse
make it easy for learners, software developers, engineers and other
domain experts to solve real-world problems using ML on the edge
and TinyML devices without advanced degrees in ML or embedded
systems. We therefore expose learners to the end-to-end MLOps
platforms in Course 4, but note that more focus on such platforms
in future courses could enable even more accessibility.

In summary, there are many paths to broaden applied-ML ac-
cess. The correct approach-or, better, the most suitable approach-
depends on the situation. We, therefore, hope this discussion clari-
fies the pros and cons of approaching applied ML through TinyML.

10 CONCLUSION

Expanding access to high-quality educational content, especially for
machine learning, is important to ensuring that expertise diffuses
beyond just a few prominent organizations. But doing so in a way
that is both accessible and affordable to many different people is
a difficult task. The four-part TinyML edX series we present here
aims to tackle these challenges by providing application-driven

https://github.com/tinyMLx/courseware
https://maker.makecode.com/#editor
https://maker.makecode.com/#editor

Widening Access to Applied Machine Learning with TinyML

content that covers the entire ML life cycle, giving students hands-
on experience guided by world experts and developing their ML
skills regardless of their background. The forums, chats, optional
project, and online discussions with the class creators promote
community development and continued learning. The early impact
of this approach is demonstrable: numerous participants from a
variety of locations and demographics have signed up. We have
also begun initiatives to further increase access by helping develop
courses that target K-12 students and teachers, as well as courses
in other languages.

ACKNOWLEDGEMENTS

Our approach to broadening access to applied machine learning
using TinyML is based on input from many individuals at vari-
ous organizations. We thank Rod Crawford, Tomas Eds6, and Felix
Thomasmathibalan from Arm; Joe Lynas and Sacha Krstulovi¢
from Audio Analytic; Joshua Meyer from Coqui; Adam Benzio,
Jenny Plunkett, Daniel Situnayake and Zach Shelby from Edge
Impulse; Tulsee Doshi, Josh Gordon, Alex Gruenstein, Prateek
Jain, and Nat Jeffries from Google; Marco Zennaro from Interna-
tional Centre for Theoretical Physics (ICTP); Sek Chai from
Latent.Al; Jane Polak Scowcroft from Mozilla Common Voice;
Thiery Moreau from OctoML; Evgeni Gousev and Erich Plondke
from Qualcomm; and Danilo Pau from STMicroelectronics for
their valuable feedback. We are also grateful to the Google Ten-
sorFlow Lite Micro team, which includes Robert David, Jared
Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick
Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, Rocky Rhodes,
and Tiezhen Wang, without whom we would have been unable
to deploy models in microcontrollers, and Arduino—Jose Garcia
Dotel and Martino Facchin—who helped us with global distribu-
tion of the TinyML kit. We also thank the tinyML Foundation for
nurturing activity around embedded ML, providing guidance and
supporting educational and outreach activities around TinyML.

REFERENCES

[1] Tom M Mitchell, Rich Caruana, Dayne Freitag, John McDermott, David
Zabowski, et al. Experience with a learning personal assistant. Communi-
cations of the ACM, 37(7), 1994.

Alexander Maedche, Christine Legner, Alexander Benlian, Benedikt Berger,
Henner Gimpel, Thomas Hess, Oliver Hinz, Stefan Morana, and Matthias Sollner.
Al-based digital assistants. Business & Information Systems Engineering, 61(4),
2019.

Uriin Dogan, Johann Edelbrunner, and Ioannis lossifidis. Autonomous driving:
A comparison of machine learning techniques by means of the prediction of
lane change behavior. In 2011 IEEE International Conference on Robotics and
Biomimetics. IEEE, 2011.

Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceedings
of the IEEE international conference on computer vision, 2015.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas A.
Funkhouser. TossingBot: Learning to Throw Arbitrary Objects with Resid-
ual Physics. CoRR, abs/1903.11239, 2019.

Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Inter-
pretable machine learning in healthcare. In Proceedings of the 2018 ACM interna-
tional conference on bioinformatics, computational biology, and health informatics,
2018.

Arash Jahangiri and Hesham A Rakha. Applying machine learning techniques
to transportation mode recognition using mobile phone sensor data. IEEE
transactions on intelligent transportation systems, 16(5), 2015.

7

18

[8] Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis Kandris.

(9]

[10

(11

[12
[13
[14
[15
[16
[17

[18
[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

]

]

]

]

]

]

A review of machine learning and IoT in smart transportation. Future Internet,
11(4), 2019.

Anna L Buczak and Erhan Guven. A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications surveys
& tutorials, 18(2), 2015.

Vijaya B Kolachalama and Priya S Garg. Machine learning and medical education.
NPj digital medicine, 1(1), 2018.

Hadeel S Alenezi and Maha H Faisal. Utilizing crowdsourcing and machine
learning in education: Literature review. Education and Information Technologies,
2020.

Terry Brown. The AI Skills Shortage. https://itchronicles.com/artificial-
intelligence/the-ai-skills-shortage/, October 2019.

Jean-Frangois Gagné. Global AI Talent Report 2019. https://jfgagne.ai/talent-
2019/.

Ronald M Harden. What is a spiral curriculum? Medical teacher, 21(2), 1999.
Yoram Neumann, Edith Neumann, and Shelia Lewis. The robust learning model
with a spiral curriculum: Implications for the educational effectiveness of online
master degree programs. Contemporary Issues in Education Research, 10(2), 2017.
Gleb Chuvpilo. Who’s ahead in Al research AT NeurIPS 2020? https://chuvpilo.
medium.com/whos-ahead- in-ai-research-at-neurips- 2020-bf2a40a54325, De-
cember 2020.

Stack Overflow Developer Survey 2020. https://insights.stackoverflow.com/
survey/2020#developer-roles.

IC Insights. MCUs Expected to Make Modest Comeback after 2020 Drop, 2020.
Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello edge:
Keyword spotting on microcontrollers. arXiv preprint arXiv:1711.07128, 2017.
Seungwoo Choi, Seokjun Seo, Beomjun Shin, Hyeongmin Byun, Martin Kersner,
Beomsu Kim, Dongyoung Kim, and Sungjoo Ha. Temporal convolution for
real-time keyword spotting on mobile devices. arXiv preprint arXiv:1904.03814,
2019.

Aravind Kota Gopalakrishna, Tanir Ozgelebi, Antonio Liotta, and Johan J
Lukkien. Exploiting machine learning for intelligent room lighting applications.
In 2012 6th IEEE International Conference Intelligent Systems. IEEE, 2012.
Clement Duhart, Gershon Dublon, Brian Mayton, Glorianna Davenport, and
Joseph A Paradiso. Deep learning for wildlife conservation and restoration
efforts. In 36th International Conference on Machine Learning, Long Beach,
volume 5, 2019.

Enrico Di Minin, Christoph Fink, Henrikki Tenkanen, and Tuomo Hiippala.
Machine learning for tracking illegal wildlife trade on social media. Nature
ecology & evolution, 2(3), 2018.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3), 2009.

Alan Turnbull, James Carroll, and Alasdair McDonald. Combining SCADA and
vibration data into a single anomaly detection model to predict wind turbine
component failure. Wind Energy, 24(3), 2021.

X]J Zeng, M Yang, and YF Bo. Gearbox oil temperature anomaly detection for
wind turbine based on sparse Bayesian probability estimation. International
Journal of Electrical Power & Energy Systems, 123, 2020.

Sudha Gupta, Faruk Kazi, Sushama Wagh, and Ruta Kambli. Neural network
based early warning system for an emerging blackout in smart grid power
networks. In Intelligent Distributed Computing. Springer, 2015.

Takehisa Yairi, Yoshinobu Kawahara, Ryohei Fujimaki, Yuichi Sato, and Kazuo
Machida. Telemetry-mining: a machine learning approach to anomaly detection
and fault diagnosis for space systems. In 2nd IEEE International Conference on
Space Mission Challenges for Information Technology (SMC-IT 06). IEEE, 2006.
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 2009.

Ekaba Bisong. Google colaboratory. In Building Machine Learning and Deep
Learning Models on Google Cloud Platform. Springer, 2019.

Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian
Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, et al. Tensorflow
lite micro: Embedded machine learning on tinyml systems. arXiv preprint
arXiv:2010.08678, 2020.

Kalvin Bahia and Stefano Suardi. The state of mobile internet connectivity 2920.
GSMA Connected Society: London, 2020.

Joseph Johnson. Global digital population as of January 2021.
https://www.statista.com/statistics/617136/digital-population-worldwide/#:
~:text=Global%20internet%20usage&text=The%20global%20internet%
20penetration%20rate, penetration%20rate%20among%20the%20population.,
January 2021.

Laura Silver. Smartphone Ownership Is Growing Rapidly Around the World,
but Not Always Equally. https://www.pewresearch.org/global/2019/02/
05/smartphone-ownership-is- growing-rapidly-around- the-world-but-not-

https://itchronicles.com/artificial-intelligence/the-ai-skills-shortage/
https://itchronicles.com/artificial-intelligence/the-ai-skills-shortage/
https://jfgagne.ai/talent-2019/
https://jfgagne.ai/talent-2019/
https://chuvpilo.medium.com/whos-ahead-in-ai-research-at-neurips-2020-bf2a40a54325
https://chuvpilo.medium.com/whos-ahead-in-ai-research-at-neurips-2020-bf2a40a54325
https://insights.stackoverflow.com/survey/2020#developer-roles
https://insights.stackoverflow.com/survey/2020#developer-roles
https://www.statista.com/statistics/617136/digital-population-worldwide/#:~:text=Global%20internet%20usage&text=The%20global%20internet%20penetration%20rate,penetration%20rate%20among%20the%20population.
https://www.statista.com/statistics/617136/digital-population-worldwide/#:~:text=Global%20internet%20usage&text=The%20global%20internet%20penetration%20rate,penetration%20rate%20among%20the%20population.
https://www.statista.com/statistics/617136/digital-population-worldwide/#:~:text=Global%20internet%20usage&text=The%20global%20internet%20penetration%20rate,penetration%20rate%20among%20the%20population.
https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/

Widening Access to Applied Machine Learning with TinyML

(35]

[36

S
)

S
&

N
et

w
—

[52

[53

[55

[56

(57

[58

always-equally/, August 2020.

Dazhi Yang. Instructional strategies and course design for teaching statistics on-
line: perspectives from online students. International Journal of STEM Education,
4(1), 2017.

Nadia Rahbek Dyrberg and Henriette Tolstrup Holmegaard. Motivational
patterns in STEM education: a self-determination perspective on first year
courses. Research in Science & Technological Education, 37(1), 2019.

Claire Wladis, Alyse C Hachey, and Katherine Conway. An investigation of
course-level factors as predictors of online STEM course outcomes. Computers
& Education, 77, 2014.

E Oran Brigham. The fast Fourier transform and its applications. Prentice-Hall,
Inc., 1988.

Vibha Tiwari. MFCC and its applications in speaker recognition. International
Jjournal on emerging technologies, 1(1), 2010.

Alexander Gruenstein, Raziel Alvarez, Chris Thornton, and Mohammadali Gho-
drat. A cascade architecture for keyword spotting on mobile devices. arXiv
preprint arXiv:1712.03603, 2017.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? arXiv preprint arXiv:1411.1792, 2014.
Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR,
abs/1704.04861, 2017.

Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. KNN model-
based approach in classification. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems". Springer, 2003.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures.
In Proceedings of ICML workshop on unsupervised and transfer learning. JMLR
Workshop and Conference Proceedings, 2012.

Arduino Nano 33 BLE. https://store.arduino.cc/usa/nano-33-ble. (Accessed on
04/02/2021).

OV7675. https://www.arducam.com/products/camera-breakout-board/0-3mp-
0v7675/. (Accessed on 04/02/2021).

Joseph S Krajcik and Phyllis C Blumenfeld. Project-based learning. na, 2006.
Petri Vesikivi, Minna Lakkala, Jaana Holvikivi, and Hanni Muukkonen. The
impact of project-based learning curriculum on first-year retention, study expe-
riences, and knowledge work competence. Research Papers in Education, 35(1),
2020.

TensorFlow. TinyConv. https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/examples/speech_commands/models.py, 2021. [Online; accessed
15-Mar-2021].

Trevor Martin. The designer’s guide to the Cortex-M processor family. Newnes,
2016.

Colby R Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy
Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov,
et al. Benchmarking TinyML systems: Challenges and direction. arXiv preprint
arXiv:2003.04821, 2020.

Cloud automl custom machine learning models | google cloud. https://cloud.
google.com/automl. (Accessed on 05/30/2021).

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8697-8710,
2018.

Hiroshi Doyu, Roberto Morabito, and Martina Brachmann. A tinymlaas ecosys-
tem for machine learning in iot: Overview and research challenges. In 2021
International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pages
1-5. IEEE, 2021.

Jakub Kone¢ény, H Brendan McMahan, Felix X Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.
Harold Pashler, Mark McDaniel, Doug Rohrer, and Robert Bjork. Learning styles:
Concepts and evidence. Psychological science in the public interest, 9(3), 2008.
Alison S Lockman and Barbara R Schirmer. Online Instruction in Higher Edu-
cation: Promising, Research-Based, and Evidence-Based Practices. Journal of
Education and E-Learning Research, 7(2), 2020.

Philip J Guo, Juho Kim, and Rob Rubin. How video production affects student
engagement: An empirical study of MOOC videos. In Proceedings of the first
ACM conference on Learning scale conference, 2014.

H Frank Cervone. Applied digital library project management: Using Pugh
matrix analysis in complex decision-making situations. OCLC Systems & Services:
International digital library perspectives, 2009.

Espressif Systems. ESP32. https://www.espressif.com/en/products/socs/esp32.
Peter Jamieson. Arduino for teaching embedded systems. are computer scientists
and engineering educators missing the boat? In Proceedings of the international
conference on frontiers in education: computer science and computer engineering

19

[62

[63
[64

[65

[66

[67

[68

[69

[70

[71

[72

[73

[74

[75

[76

[77
[78
[79

[80

(81

[82

[83

(84

]

]

]
]

]

]

]

]

(FECS). The Steering Committee of The World Congress in Computer Science,
Computer ..., 2011.

nRF52840. https://www.nordicsemi.com/-/media/Software-and-other-
downloads/Product-Briefs/nRF52840-SoC-product-brief.pdf?la=en&hash=
EDF4C48A053E7943AD3C9DD3963B626D768B5885. (Accessed on 04/02/2021).
Mbed OS. https://os.mbed.com/mbed-os/. (Accessed on 04/02/2021).

Thomas W Schubert, Alessandro D’Ausilio, and Rosario Canto. Using Arduino
microcontroller boards to measure response latencies. Behavior research methods,
45(4), 2013.

Pico4ML by Arducam. https://www.arducam.com/pico4ml-an-rp2040-based-
platform-for-tiny-machine-learning/. (Accessed on 04/02/2021).

Barbara J. Grosz, David Gray Grant, Kate Vredenburgh, Jeff Behrends, Lily Hu,
Alison Simmons, and Jim Waldo. Embedded ethiCS: Integrating ethics across
CS curriculum. Communications of the ACM, 62(8), 2019. https://cacm.acm.org/
magazines/2019/8/238345-embedded- ethics/fulltext.

Aaron Smith. Public Attitudes Toward Technology Companies.
https://www.pewresearch.org/internet/2018/06/28/public- attitudes-toward-
technology-companies/.

Kathleen C. Fraser, J. Meltzer, and F. Rudzicz. Linguistic Features Identify
Alzheimer’s Disease in Narrative Speech. Journal of Alzheimer’s disease : JAD,
49 2, 2016.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209, 2018.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler,
Josh Meyer, Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor
Weber. Common Voice: A Massively-Multilingual Speech Corpus, 2020.
Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and
Rocky Rhodes. Visual wake words dataset. arXiv preprint arXiv:1906.05721,
2019.

Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Dis-
parities in Commercial Gender Classification. In Sorelle A. Friedler and Christo
Wilson, editors, Proceedings of the 1st Conference on Fairness, Accountability and
Transparency, volume 81 of Proceedings of Machine Learning Research, New York,
NY, USA, 23-24 Feb 2018. PMLR.

Discourse Discussion Forum: How will the lack of female voices be han-
dled. https://discourse.mozilla.org/t/how-will-the-lack-of-female-voices-be-
handled/40551.

Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion
Mengesha, Connor Toups, John R. Rickford, Dan Jurafsky, and Sharad Goel.
Racial disparities in automated speech recognition. Proceedings of the National
Academy of Sciences, 117(14), 2020.

Yunhan Wu, Daniel Rough, Anna Bleakley, Justin Edwards, Orla Cooney,
Philip R. Doyle, Leigh Clark, and Benjamin R. Cowan. See What I'm Say-
ing? Comparing Intelligent Personal Assistant Use for Native and Non-Native
Language Speakers. In 22nd International Conference on Human-Computer In-
teraction with Mobile Devices and Services, MobileHCI 20, New York, NY, USA,
2020. Association for Computing Machinery.

Joel Shor, Dotan Emanuel, Oran Lang, Omry Tuval, Michael Brenner, Julie Cat-
tiau, Fernando Vieira, Maeve McNally, Taylor Charbonneau, Melissa Nollstadt,
Avinatan Hassidim, and Yossi Matias. Personalizing ASR for Dysarthric and
Accented Speech with Limited Data, 2019.

Google. https://pair-code.github.io/what-if-tool/, 2020.

Google. Responsible AI Toolkit : TensorFlow. https://www.
tensorflow.org/responsible%5Fai, 2020.

Kartik Prabhu, Brian Jun, Pan Hu, Zain Asgar, Sachin Katti, and Pete Warden.
Privacy-Preserving Inference on the Edge: Mitigating a New Threat Model. In
Research Symposium on Tiny Machine Learning, 2021.

Drew Harwell. Doorbell-camera firm Ring has partnered with 400 police
forces, extending surveillance concerns. https://www.washingtonpost.com/
technology/2019/08/28/doorbell-camera-firm-ring-has- partnered-with-
police-forces-extending-surveillance-reach/.

Zack Whittaker. Fitness app PumpUp leaked health data, private mes-
sages. https://www.zdnet.com/article/fitness-app-pumpup-leaked-health-data-
private-messages/.

Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. Dolphinattack: Inaudible voice commands. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.
Benjamin Reinheimer, Lukas Aldag, Peter Mayer, Mattia Mossano, Reyhan
Duezguen, Bettina Lofthouse, Tatiana von Landesberger, and Melanie Volkamer.
An investigation of phishing awareness and education over time: When and
how to best remind users. In Sixteenth Symposium on Usable Privacy and Security
(${$SOUPSS$}$ 2020), 2020.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasser-
man, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru.
Model Cards for Model Reporting. Proceedings of the Conference on Fairness,

https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://store.arduino.cc/usa/nano-33-ble
https://www.arducam.com/products/camera-breakout-board/0-3mp-ov7675/
https://www.arducam.com/products/camera-breakout-board/0-3mp-ov7675/
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/speech_commands/models.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/speech_commands/models.py
https://cloud.google.com/automl
https://cloud.google.com/automl
https://www.espressif.com/en/products/socs/esp32
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-SoC-product-brief.pdf?la=en&hash=EDF4C48A053E7943AD3C9DD3963B626D768B5885
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-SoC-product-brief.pdf?la=en&hash=EDF4C48A053E7943AD3C9DD3963B626D768B5885
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-SoC-product-brief.pdf?la=en&hash=EDF4C48A053E7943AD3C9DD3963B626D768B5885
https://os.mbed.com/mbed-os/
https://www.arducam.com/pico4ml-an-rp2040-based-platform-for-tiny-machine-learning/
https://www.arducam.com/pico4ml-an-rp2040-based-platform-for-tiny-machine-learning/
https://cacm.acm.org/magazines/2019/8/238345-embedded-ethics/fulltext
https://cacm.acm.org/magazines/2019/8/238345-embedded-ethics/fulltext
https://www.pewresearch.org/internet/2018/06/28/public-attitudes-toward-technology-companies/
https://www.pewresearch.org/internet/2018/06/28/public-attitudes-toward-technology-companies/
https://discourse.mozilla.org/t/how-will-the-lack-of-female-voices-be-handled/40551
https://discourse.mozilla.org/t/how-will-the-lack-of-female-voices-be-handled/40551
https://pair-code.github.io/what-if-tool/
https://www.tensorflow.org/responsible%5Fai
https://www.tensorflow.org/responsible%5Fai
https://www.washingtonpost.com/technology/2019/08/28/doorbell-camera-firm-ring-has-partnered-with-police-forces-extending-surveillance-reach/
https://www.washingtonpost.com/technology/2019/08/28/doorbell-camera-firm-ring-has-partnered-with-police-forces-extending-surveillance-reach/
https://www.washingtonpost.com/technology/2019/08/28/doorbell-camera-firm-ring-has-partnered-with-police-forces-extending-surveillance-reach/
https://www.zdnet.com/article/fitness-app-pumpup-leaked-health-data-private-messages/
https://www.zdnet.com/article/fitness-app-pumpup-leaked-health-data-private-messages/

Widening Access to Applied Machine Learning with TinyML

[85

(86

(87]

(88

[89

[90

Accountability, and Transparency, January 2019.

Paul Belleflamme and Julien Jacqmin. An Economic Appraisal of MOOC Plat-
forms: Business Models and Impacts on Higher Education. CESifo Economic
Studies, 62, 09 2014.

Arduino Tiny Machine Learning Kit. https://store.arduino.cc/usa/tiny-machine-
learning-kit, April 2021.

Chih-Ming Chen and Chung-Hsin Wu. Effects of different video lecture types
on sustained attention, emotion, cognitive load, and learning performance.
Computers & Education, 80, 2015.

Richard E Mayer, Logan Fiorella, and Andrew Stull. Five ways to increase
the effectiveness of instructional video. Educational Technology Research and
Development, 68(3), 2020.

Richard Mayer and Richard E Mayer. The Cambridge handbook of multimedia
learning. Cambridge university press, 2005.

Jiahui Wang, Pavlo Antonenko, and Kara Dawson. Does visual attention to
the instructor in online video affect learning and learner perceptions? An eye-
tracking analysis. Computers & Education, 146, 2020.

Rain Dance Canada. Audio Quality vs. Video Quality. https://www.youtube.
com/watch?v=-PLMiA18tBc.

Frame.io. Video Review and Collaboration Software. https://www.frame.io/.
Arribada Initiative: Open Source Conservation Technology. https://arribada.
org/, March 2021.

20

[94] Amy-Mae Turner. 10 free online classes from Harvard to learn something new.

[95

[96
[97
[98
[99
[100

[101

]

1
]
1

https://mashable.com/article/free-harvard-classes-online/, January 2021.

F Hollands and A Kazi. Benefits and Costs of MOOC-Based Alternative Creden-
tials: 2018-2019 Results from End-of-Program Surveys. Center for Benefit-Cost
Studies of Education, Teachers College, Columbia University, 2019.

Tiny Machine Learning Open Education Initiative (TinyMLx). https://tinymlx.
org/.

Marcelo Rovai. TinyML - Machine Learning for Embedding Devices. https:
//github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1.

Backyard Brains 2021 Al Fellowship. https://blog.backyardbrains.com/2021/03/
backyard-brains-2021-ai-fellowship/, March 2021.

Antmicro. Renode.io - Antmicro’s virtual development framework for complex
embedded systems. https://renode.io/.

Google. Tensorflow lite | ml for mobile and edge devices. https://www.tensorflow.
org/lite. (Accessed on 06/02/2021).

Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping
Yu, Kangyi Zhang, Shanging Cai, Eric Nielsen, David Soergel, Stan Bileschi,
Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D. Scul-
ley, Rajat Monga, Greg Corrado, Fernanda B. Viégas, and Martin Watten-
berg. Tensorflow.js: Machine learning for the web and beyond. arXiv preprint
arXiv:1901.05350, 2019.

[102] Edge impulse. https://www.edgeimpulse.com/. (Accessed on 06/02/2021).

https://store.arduino.cc/usa/tiny-machine-learning-kit
https://store.arduino.cc/usa/tiny-machine-learning-kit
https://www.youtube.com/watch?v=-PLMiA18tBc
https://www.youtube.com/watch?v=-PLMiA18tBc
https://www.frame.io/
https://arribada.org/
https://arribada.org/
https://mashable.com/article/free-harvard-classes-online/
https://tinymlx.org/
https://tinymlx.org/
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1
https://github.com/Mjrovai/UNIFEI-IESTI01-T01-2021.1
https://blog.backyardbrains.com/2021/03/backyard-brains-2021-ai-fellowship/
https://blog.backyardbrains.com/2021/03/backyard-brains-2021-ai-fellowship/
https://renode.io/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.edgeimpulse.com/

	Abstract
	1 Introduction
	2 Challenges and Opportunities
	2.1 Student Background Diversity
	2.2 Need for Academia/Industry Collaboration
	2.3 Demand for Full-Stack ML Expertise

	3 ML's Future Is Tiny and Bright
	3.1 Introduction to TinyML
	3.2 TinyML for Applied ML
	3.3 TinyML for Expanding Access

	4 Applied-TinyML Specialization
	4.1 A Four-Course Spiral Design
	4.2 Fundamentals of TinyML (Course 1)
	4.3 Applications of TinyML (Course 2)
	4.4 Deploying TinyML (Course 3)
	4.5 Scaling TinyML (Course 4)
	4.6 Student Activities
	4.7 Accessible, Hands-on Learning

	5 Ethical & Responsible AI
	5.1 Ethical Consideration of Ubiquitous ML
	5.2 Designing AI Responsibly (Course 1)
	5.3 Developing AI Responsibly (Course 2)
	5.4 Deploying AI Responsibly (Course 3)
	5.5 Scaling AI Responsibly (Course 4)

	6 Access via MOOCs
	6.1 Massive Open Online Course
	6.2 Accelerated Remote Media Production
	6.3 Building Community

	7 Broader Impact
	7.1 Course Enrollment
	7.2 Completion Rates
	7.3 Learner Demographics

	8 Future Directions
	9 Limitations
	10 Conclusion
	References

