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Abstract

In this paper, we tackle the problem of self supervised pre-training of deep neural
networks for large scale tabular data in online advertising. Self supervised learning
has recently been very effective for pre-training representations in domains such as
vision, natural language processing, etc. But unlike these, designing self supervised
learning tasks for tabular data is inherently challenging. Tabular data can consist of
various types of data with high cardinality and range of feature values especially
in a large scale real world setting. To that end, we propose a self supervised
pre-training strategy that utilizes Manifold Mixup to produce data augmentations
for tabular data and perform reconstruction on these augmentations using noise
contrastive estimation and mean absolute error losses, both of which are particularly
suitable for large scale tabular data. We demonstrate its efficacy by evaluating on
the problem of click fraud detection on ads to obtain a 9% relative improvement
on robot detection metrics over a supervised learning baseline and 4% over a
contrastive learning experiment.

1 Introduction

Unsupervised deep learning in the recent years has seen massive advancements. In particular, there
has been a burgeoning of works centered around self supervised learning (SSL) across domains such
as vision [3], natural language processing [6], etc. One of the foundations spurting this growth is
the ever increasing sizes of datasets such as ImageNet [5], Microsoft COCO [13], superglue [20],
etc. Compared to the typical supervised learning framework, SSL boasts largely of pre-training
representations on these datasets followed by fine-tuning to learn task specific representations.

Tabular data is ubiquitous and there has been some interest recently towards porting successful
frameworks such as self supervised pre-training from other domains to tabular datasets. In this paper,
we present a reconstruction based SSL framework for tabular data that is specifically designed to
handle large scale tabular data. We utilize a data augmentation strategy using Manifold Mixup [17]
that is generic and useable with all forms of tabular data. Manifold Mixup interpolates linearly
between hidden state representations to produce perturbed datapoints in the hidden state manifold,
that are in the vicinity of the original hidden state representations. The network is tasked to recover
the original input from these perturbed datapoints. For instance, in case of a categorical input feature,
the network learns to classify the correct category among other randomly sampled categories using
noise contrastive estimation. We consider the scenario of online advertising wherein ads are displayed
when a user visits a website. In such domains, features such as customer ID have very high cardinality
and frequency based features have a very range of values. There is prevalence of robotic traffic that
click on such ads. We evaluate our approach on large scale ads data on the problem of click fraud
detection while comparing it to a supervised learning baseline and a contrastive SSL experiment to
show its efficacy.
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The rest of the paper is as follows: Section 2 summarizes and reviews related work, Section 3
describes our baseline and the proposed method, Section 4 defines the evaluation metrics and details
the results of our approach, and we conclude in Section 5.

2 Related Work
Self Supervised Learning Self Supervised Learning (SSL) is a form of unsupervised learning
where a model learns representations by utilizing invariant data transformations, commonly known as
“pretext” tasks. SSL methods for vision [3] use image augmentations to create pairs of noisy views of
the same image followed by contrastive learning with random negative samples. Another variant of
loss commonly used in SSL is reconstruction loss and it is similar to denoising autoencoders [19]
Corruption of data is central to SSL and various methods are used to create noisy versions of the
original input such as data augmentation [3], introduction of noise [18], etc.

Tabular data Recently there has been some progress towards modelling tabular data with deep
learning especially with introduction of transformer based models such as TabTransformers [10],
TaBERT [21], etc. In the context of SSL, research on tabular data has witnessed some works like
SubTab [16], VIME [22], SCARF [1]. SubTab performs reconstruction of input from a subset
of its features in an autoencoder with the assumption that there exists some overlap in features.
VIME [22] proposed pretext tasks to estimate mask vectors from corrupted data samples but these
were not designed to handle embeddings for categorical features. SAINT [15] proposes several
improvements to TabTransformers including CutMix on input features but utilizes cross-entropy loss
for reconstruction of categorical features which is not scalable with the number of classes (categories).

Online Advertising Online advertising has large amounts of tabular data and problems studied
in this domain such as click-through rate (CTR) prediction [4], conversion rate (CVR) prediction
[14], contextual advertising [2], attribution modelling[7] and ad fraud detection [12] have typically
utilized supervised learning. In this paper, we are concerned with the problem of ad fraud detection
where the goal is to invalidate robotic clicks. Some of the available solutions include lists of entities
(e.g. IP address, User Agent, etc) that are deemed entirely robotic. This leads to a very low precision
solution as an entity will see a mixture of human and robotic traffic. Additionally, since these lists are
static, they also suffer from low recall during emergent attacks. These reasons warrant the need to
build sophisticated models that learn robotic activity patterns and are able to invalidate traffic at a
very high precision and recall. Ad fraud detection also presents an ideal setting for testing of SSL
techniques because there are no high quality labels that identify bots. Additionally, the domain is
naturally adversarial and continuously evolving which requires algorithms to be highly robust.

3 Method

3.1 Baseline Supervised Model

We consider a website that displays ads to users and construct a variety of features for each ad click.
These features provide the model with a discriminative ability to identify robots that click on ads
from humans and include:

• Frequency and velocity counters: Volume and rate of clicks from a user computed over
various time periods ranging from few minutes to hours. These features are critical for
identifying emergent robotic attacks that involve a sudden burst of clicks from a robotic
entity.

• User-entity counters: Distinct sessions and users from an IP address in the recent past. We
also compute the corresponding maximum values seen in an hour. These features help to
identify IP addresses that correspond to gateways of enterprises that may have many users
behind them who perform a large number of ad clicks. We do not want to inadvertently
mark such IPs as robotic.

• Time of click: Hour-of-day and day-of-week mapped to points on the unit circle. Human
activity follows the regular diurnal and weekly activity patterns but robotic activity may not
conform to it and these features help to consider activity patterns over time. Also mapping
these features to the unit circle ensures a smooth transition from the last hour (or day) to the
first one and the model does not see a sudden jump in the feature value.
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Figure 1: Manifold Mixup used to produce data augmentations

• Logged-in: Boolean feature that captures if the user was logged-in to the account. To be
logged in requires a valid email address and/or phone number and requires more sophistica-
tion from a robot.

These features are largely numerical in nature. As these are counter based features, they have a large
range of values.

Embeddings The features described so far cannot “remember” and learn about behavior of a
robotic entity across clicks due to lack of any entity identifiers as features. Towards remedying
this drawback, we consider embeddings for customer ID, user agent, IP 3-octet and features from
the raw HTTP request made by a client to the website. Instead of directly learning embeddings
for these categorical features as part of supervised learning, we pretrain the embeddings and later
use them in the supervised model as non-trainable parameters. The rationale behind pre-training is
two-fold: 1) Lack of good quality labels can lead to undesirable behavior learning 2) Overfitting to a
few data points due to the high cardinality of these features (≫ 103). All of these features have a
long tailed distribution. To tackle this, an out of vocabulary embedding is created that groups sparse
feature values together. The sparsity is dependent on the number of clicks and the threshold is a
hyperparameter.

The features are used to train a DNN to solve a classification problem. The labels used for the
classification problem act as proxy for humans 1 and are based on clicks that led to a purchase. The
network has three fully-connected hidden layers with ReLU activation with the final layer connected
to a sigmoid. Since the dataset is imbalanced with very few human (0) labels, we weigh the i-th
training sample by wi = C/Ni, where Ni is total clicks in (houri; dayi; logged-ini; labeli) bucket
and C is a constant added for numerical stability. The network is optimized to minimize weighted
binary cross-entropy loss. The network trains on all ad clicks in a week for one epoch. Next, we
describe the methodology to create noisy samples for the pre-training task used in SSL.

3.2 Self Supervised Pretraining of Embeddings

Data Augmentation In tabular data, it is not straightfoward to create two views of the same data
point as in vision. Techniques such as MixUp [24], CutMix[23], Feature Corruption [1], etc., that
perform mixing directly on the input are not suitable for our usecase, as unlike images, our data is not
very high dimensional. Hence, mixing inputs directly can lead to high mismatch and information
loss. We leverage ideas from Manifold Mixup[17] for creating noisy representations from the latent
representations of hidden states. Consider a DNN with an architecture same as Section 3.1 except
that the output sigmoid layer is replaced with a latent representation of length equal to the number
of input features 2. Let’s represent this network as f(x) = fk(gk(x)), where gk denotes portion
of the neural network mapping the input x to the hidden representation at layer k and fk maps the
hidden representation to the output. Let k be randomly sampled among the three hidden layers of the
network. Let z = f(x) and choose x̃ randomly from the same training batch. We define the mixed
representation in the k-th layer as: h

′

k = λ · gk(x) + (1− λ) · gk(x̃),. This is passed through rest of
the network to get a noisy latent representation z

′
= fk(h

′

k) with λ = 0.75 to control the mixing.

1It is important to note here that not all non-human activity necessitates to robot activity.
2this is to form a 1 to 1 mapping between the inputs and outputs for reconstruction
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Figure 2: Reconstruction loss utilizing mean absolute error (MAE) for continuous features and noise
contrastive estimation (NCE) for categorical features

Unlike isometric corruption with Gaussian noise, these perturbations are directed towards hidden
representations of other data points. Figure 1 visually depicts Manifold Mixup.

Pretext Task For computing the reconstruction loss, we reconstruct the original input features from
the noisy latent representation of each click. There is a 1-1 mapping between elements in the latent
representation and input features and we pass each element in the latent output through an additional
projection layer of 5 hidden nodes to get the reconstruction of each feature. In case of continuous
features, the reconstruction is a scalar and we compute the mean absolute error with respect to the
original value. Using the standard mean squared error for reconstruction loss like in [15] leads to a
poor performance due to the large dynamic range of some features. In case of categorical features,
we can compute the cross entropy loss at output of the projection layer but this is not feasible due to a
large vocabulary size (≫ 103) for these features. Hence we approximate the reconstruction loss for
categorical features with noise contrastive estimation (NCE)[8]. NCE approximates the cross entropy
loss by reducing it to a binary classification problem between choosing the true category among other
randomly sampled values.

Let a click be mapped to M input features with x = (xj)
M
j=1 and let the indices corresponding

to continuous features lie in the set C. We denote the j-th reconstructed continuous feature as rj .
Consider a categorical feature xj , j /∈ C and let {rj,p}p denote the outputs of the projection layer
where p ranges over all possible values of xj . Since it is not tractable to calculate {rj,p}p for large
cardinality of p, we compute rj,pj where pj is the correct index for the j-th categorical feature and
{rj,q}q∈Qj

where Qj is a set of randomly chosen negative category indices for xj . The reconstruction
loss for x is defined as:

LR =
1

N

∑
x

(∑
j∈C

|rj − xj |︸ ︷︷ ︸
MAE

−
∑
j /∈C

log
erj,pj∑
q∈Qj

erj,q︸ ︷︷ ︸
NCE

)
(1)

4 Evaluation

4.1 Metrics

Due to lack of confident labels on robotic clicks, we cannot reliably measure standard metrics for a
classification model like precision and recall. Hence we use other metrics that are closely aligned
with the business impact, and also allow us to reliably compare models.

Invalidation Rate (IVR) This is defined as the fraction of clicks marked as robotic by the algorithm,
i.e., IVR = (ROBOTIC CLICKS)/(TOTAL CLICKS). IVR is indicative of recall of the model, but it
cannot be viewed in isolation since a poorly-performing algorithm might incorrectly invalidate a
significant volume of human clicks. Hence we always measure IVR in conjunction with False Positive
Rate (defined next) to ensure that we measure recall without reducing the precision of detection.
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Table 1: Comparing models at a particular FPR (%)

Model IVR % Robotic
Coverage %

SSL Combined 1.09x 1.07y
SSL Reconstruction 1.09x y

SSL Contrastive 1.05x 0.96y
Supervised Baseline x y

FPR %

IV
R 

%

SSL combined loss
SSL reconstruction loss
SSL contrastive loss
Supervised Baseline

Figure 3: IVR-FPR curves of models

False Positive Rate (FPR) This is defined as the fraction of human clicks invalidated by the algo-
rithm, i.e., FPR = HUMAN CLICKS MARKED AS ROBOTIC

TOTAL HUMAN CLICKS
. But we cannot directly measure FPR since we do

not have confident labels for human clicks. We consider ad clicks that led to a purchase as a proxy for
human clicks and measure a proxy metric FPRPROXY defined as PURCHASING AD CLICKS MARKED AS ROBOTIC

TOTAL PURCHASING AD CLICKS
.

In rest of the paper FPR refers to FPRPROXY, while noting that there are two underlying assumptions.
First is that all purchasing clicks are human and second is that purchasing clicks are a representative
sample of human clicks. We have detected robots that make purchases but these are small in number
and do not substantially change the FPR.
Robotic coverage We define a heuristic rule to identify traffic that has a high likelihood to be
robotic. If a session makes more than K ad clicks in a hour, then it is likely to be robotic. We choose
K to be a large number so that humans are less likely to click on ads at that rate. We define Robotic
coverage as the percentage of such clicks that were marked as robotic by the model. This metric can
also be considered as an indicator of recall for a model.

4.2 Results

We benchmark the performance of our reconstruction based SSL technique against the supervised
learning baseline and a contrastive learning experiment similar to [1, 15]. Except for the final loss
function, all details in the contrastive learning experiment remain the same as the reconstruction based
SSL framework. The positive sample is produced via Manifold Mixup with a high mixing coefficient
(similar to how it is done for the reconstruction loss) and the negative samples for the contrastive loss
are randomly picked from the current batch. The output of the first set of projection layers (zi) is
used for the contrastive loss computation. A more detailed description and visual depiction of the
contrastive learning experiment is given in Section A.1. We skip comparison with replaced token
detection (RTD) as proposed in TabTransformers [10] as the task is trivial to solve in our domain due
to the large cardinality of categorical features and its inability to work with real valued inputs. We
also skip data augmentation techniques that perform mixing/cropping directly on the inputs such as
from SubTab [16], SCARF [1] and VIME [22] due to aforementioned reasons in Section 3.2.

Figure 3 shows the IVR-FPR curves of the models. A model with higher IVR at particular FPR means
that the model is able to invalidate more traffic at that FPR and is hence likely to catch more bots
than a model with a lower IVR at the same FPR. Supervised Baseline is the model that directly learns
embeddings in a supervised setting. SSL contrastive loss and SSL reconstruction loss are the models
where SSL is used to pretrain embeddings using contrastive and reconstruction losses respectively.

Self supervised pre-training of embeddings improves performance when compared to the the super-
vised baseline model. The performance of reconstruction based self supervised pretraining exceeds
the contrastive learning based self supervised pretraining. We experiment with a combined formula-
tion where the latent representation of all features is passed to both the reconstruction and contrastive
losses. We observe that embeddings from this experiment have the highest robotic coverage while
maintaining a similar performance on the IVR-FPR curve as the reconstruction based SSL model
approach. This suggests that there is very less overshadowing effect between the contrastive and
reconstruction losses and using both losses results in the best performing model.

4.3 Conclusion

We propose a methodology for tackling self-supervised pre-training for large scale tabular data. Using
Manifold Mixup ensures that we are able to utilize this framework for any form of tabular data. Noise
contrastive estimation (NCE) and mean absolute error (MAE) losses enable tackling the problem
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of large cardinality of features in categorical data and large range of values in numerical data. We
expect our approach to be generally useful to all tabular data practitioners but particularly useful for
domains with large scale tabular data such as Recommender System, Advertising and healthcare. For
future work, we aim to experiment with hard negative mining for both contrastive and reconstruction
losses, since this crucial for applications in vision [9, 11] and we expect a similar behavior in the
tabular data setting.
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A Appendix

A.1 Losses
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(a) Contrastive Loss

Figure 4: Self Supervised Learning Setup on top of DNN
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Contrastive Loss Figure 4a depicts the contrastive loss where ẑi is the L2-normalized output
corresponding to xi post application of fk(gk(·)), ẑ′

i is the L2-normalized output corresponding
to h

′

i post application of fk(·), and zj with j ∈ {1, 2, 3, 4, 5, 6, 7, 8} are the normalized outputs of
randomly sampled datapoints from the current batch.

In this case, distance between the latent representation of an input and the noisy version described
above is minimized while distance between representations of two dissimilar data points is maximized.

Consider a batch of size N with inputs {xi}Ni=1 and latent representations zi = f(xi),∀i. For each
input xi, we also compute a noisy representation z

′

i as described previously. The contrastive loss is
defined as

LC := − 1

N

N∑
i=1

log
exp

(
zTi z

′

i/(∥zi∥∥z
′

i∥T )
)

∑N
j=1 exp

(
zTi zj/(∥zi∥∥zj∥T )

) , (2)

where we choose the temperature T to be 0.2 in our experiments.
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