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Abstract

We present a short survey of ways in which exist-
ing scientific knowledge are included when con-
structing models with neural networks. The in-
clusion of domain-knowledge is of special inter-
est not just to constructing scientific assistants, but
also, many other areas that involve understanding
data using human-machine collaboration. In many
such instances, machine-based model construction
may benefit significantly from being provided with
human-knowledge of the domain encoded in a suf-
ficiently precise form. This paper examines the in-
clusion of domain-knowledge by means of changes
to: the input, the loss-function, and the architecture
of deep networks. The categorisation is for ease of
exposition: in practice we expect a combination of
such changes will be employed. In each category,
we describe techniques that have been shown to
yield significant changes in network performance.

1 Introduction

Science is a cumulative enterprise, with generations of sci-
entists discovering, refining, correcting and ultimately in-
creasing our knowledge of how things are. The accelerating
pace of development in software and hardware for machine
learning—in particular, the area of deep neural networks—
inevitably raises the prospect of Artificial Intelligence for
Science [Stevens et al., 2020]. That is, how can we best
use Al methods to accelerate our understanding of the nat-
ural world? While ambitious plans exist for completely auto-
mated Al-based robot scientists [Kitano, 2016], the immedi-
ately useful prospect of using Al for Science remains semi-
automated. An example of such a collaborative system is
in Fig. 1. For such systems to work effectively, we need at
least the following: (1) We have to be able to tell the ma-
chine what we know, in a suitably precise form; and (2) The
machine has to be able to tell us what it is has found, in a
suitably understandable form. While the remarkable recent
successes of deep neural networks on a wide variety of tasks
makes a substantial case for their use in model construction,
it is not immediately obvious how either (1) or (2) should
be done with deep neural networks. In this paper, we exam-
ine ways of achieving (1). Understanding models constructed

by deep neural networks is an area of intense research ac-
tivity, and good summaries exist elsewhere [Lipton, 2016;
Arrieta ef al., 2019]. To motivate the utility of providing
domain-knowledge to a deep network, we reproduce two re-
sults from [Dash et al., 2021b] in Fig. 2, which shows that
predictive performance can increase significantly, even with
a simplified encoding of domain-knowledge (see Fig. 2(a)).
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Figure 1: An example of Al for Science. The human-in-the-loop is
a biologist. The biologist conducts experiments in a biological sys-
tem, obtains experimental observations. The biologist then extracts
data that can be used to construct machine learning model(s). Addi-
tionally, the machine learning system has access to domain knowl-
edge that can be obtained from the biologist. The machine learning
system then conveys its explanations to the biologist.

It is unsurprising that a recent report on AI for Sci-
ence [Stevens e al, 2020] identifies the incorporation of
domain-knowledge as one of the 3 Grand Challenges in de-
veloping Al systems:

“Oft-the-shelf [ML and Al] practice treats [each of
these] datasets in the same way and ignores do-
main knowledge that extends far beyond the raw
data. .. Improving our ability to systematically in-
corporate diverse forms of domain knowledge can
impact every aspect of AL”

But it is not just the construction of scientific-assistants
that can benefit from this form of man-machine collaboration,
and “human-in-the-loop” Al systems are likely to play in in-
creasingly important role in engineering, medicine, health-
care, agriculture, environment and so on [TomaSev et al.,
2020]. In this survey, we restrict the studies on incorpora-
tion of domain knowledge into neural networks, with 1 or
more hidden layers (we will sometimes also use the term
deep neural network, or DNN). Before we proceed further,
we clarify that our focus here is more specific than that
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Figure 2: The plots from [Dash er al., 2021a] showing gains in predictive accuracy of (a) multilayer perceptron (MLP), and (b) graph neural
network (GNN) with the inclusion of domain-knowledge. The domain knowledge inclusion method in (a) is a simple technique known as
‘propositionalisation’ [Lavra¢ er al., 19911]; and, the method in (b) is a general technique of incorporating domain-knowledge using bottom-
graph construction. The results shown are over 70 datasets. No importance to be given to the line joining two points; this is done for

visualisation purpose only.

of research that looks at the development of hybrid neural-
symbolic systems (see for example, [Garcez et al., 2012;
Raedt et al., 2020]); and different to the use of neural network
techniques for either emulating logical reasoning or to repre-
sent domain-concepts using a neural architecture. We refer
the reader to [Besold et al., 2017] for reviews of some of these
other strands of work. These reviews are nevertheless relevant
to some of the material in this paper since they identify some
key challenges in integrating neural-based learning with sym-
bolic knowledge representation and logical reasoning. More
directly related to this paper is the work on “informed ma-
chine learning”, reviewed in [von Rueden et al., 2019]. We
share with this work the interest in prior knowledge as an im-
portant source of information that can augment existing data.
However, the goals of that paper are more ambitious than
here. It aims to identify categories of prior knowledge, using
as dimensions: the source of the knowledge, its representa-
tion, and its point of use in a machine-learning algorithm. In
this survey, we are only concerned with some of these cate-
gories. Specifically, in terms of the categories in [von Rueden
et al., 2019], we are interested in implicit or explicit sources
of domain-knowledge, represented either as logical or nu-
meric constraints, and used at the model-construction stage
by DNNs. Therefore, we select the research articles that use
any form of domain-knowledge falling under these two cate-
gories while constructing deep neural networks.

Focus of the Paper

We adhere to a generic idea of constructing a deep model, that
is, given some data D, a structure and parameters of a deep
network (denoted by 7 and 6 respectively), a learner £ con-
structs a deep model M. Additionally, the learner gets a loss
function L that it has to optimise (mostly, minimise) while
constructing the model from data. Fig. 3 shows this proce-
dure as a block diagram. Note that: (a) we do not describe
how the learner £ constructs a model M given the inputs.
But, it is trivial to say that the learner iteratively optimises the
loss L while training a model with structure 7 and parameters
# from the given data D. For this process, it uses an optimi-
sation procedure such as the ones based on gradient descent;

and (b) we are not concerned with how the constructed deep
model M is going to be used. However, it suffices to say that
the (constructed) model M gets an input data instance (de-
scribed by the same feature space that it was trained with)
and produces an output (model prediction).
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Figure 3: Construction of a deep model M from data (D) using a
learner (£). We use 7 to denote the structure (organisation of various
layers, their interconnections etc.) and and 6 to denote the param-
eters (synaptic weights) of the deep network. L denotes the loss
function (for example, cross-entropy loss in case of classification).

In this survey, we consider the inclusion of domain knowl-
edge by transforming: (1) The input data to a deep network;
(2) The loss-function used; and (3) The model (that is, the
structure or parameters) of the deep network. In a sense,
this progression reflects a graded increase in the complexity
of changes involved. We will restrict ourselves to domain-
knowledge that can be represented either as logical or as nu-
merical constraints. Under logical constraints we consider
domain knowledge that is represented in propositional logic,
predicate logic, including binary and more generally n-ary
relations, canonical normal forms, program primitives. The
numerical constraints are represented by prior of model struc-
ture and parameters. So, we survey on research works that in-
volve these forms of background knowledge. We believe this
covers a wide range of potential applications, including those
concerned with scientific discovery.

The rest of the paper is organised as follows: Section 2
describes inclusion of domain-knowledge by augmenting or
transformation of inputs; Section 3 describes changes that



have been employed to loss-functions; and Section 4 de-
scribes biases on parameters and changes to the structure of
deep networks. Section 5 outlines some major challenges re-
lated to the inclusion of domain-knowledge in the ways we
describe. In this section, we also present perspectives on the
relevance of the use of domain-knowledge to aspects of Re-
sponsible Al, including ethics, fairness, and explainability of
DNNS.

2 Transforming the Input Data

One of the prominent approaches to incorporate domain-
knowledge into deep network is by changing inputs to the net-
work. Here, the domain-knowledge is primarily in symbolic
form. The idea is simple: If a data instance could be described
using a set of attributes that not only includes the raw feature-
values but also includes more details from the domain, then a
standard deep network could then be constructed from these
new features. A simple block diagram in Fig. 4 shows how
domain knowledge is introduced into the network via changes
in inputs. In this survey, we discuss broadly two different
ways of doing this: (a) using relational features, mostly con-
structed by a method called propositionalisation [Lavrad et
al., 1991] using another machine learning system (for exam-
ple, Inductive Logic Programming) that deals with data and
background knowledge; (b) without propositionalisation.
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Figure 4: Introducing background knowledge into deep network by
transforming data. 7 is a transformation block that takes input data
D, background knowledge (BK) and outputs transformed data D’
that is then used to construct a deep model using a learner L.

2.1 Propositionalisation

The pre-eminent form of symbolic machine learning based
on the use of relations in first-order logic is Inductive Logic
Programming (ILP) [Muggleton, 1991], which has an explicit
role for domain-knowledge being incorporated into learning.
The simplest use of ILP [Muggleton, 1991] to incorporate
n-ary relations in domain knowledge into a neural network
relies on techniques that automatically “flatten” the domain-
knowledge into a domain-specific relational features. Al-
though not all DNNs require data to be a set of feature-
vectors, this form of data representation is long-standing and
still sufficiently prevalent. In logical terms, we categorise
feature-based representations as being encodings in a propo-
sitional logic. The reader would point out, correctly, that
feature-values may not be Boolean. This is correct, but
we can represent non-Boolean features by Boolean-valued
propositions (for example, a real-valued feature f with value
4.2 would be represented by a corresponding Boolean feature
f' that has the value 1 if f = 4.2 and 0 otherwise). With

the caveat of this rephrasing, it has of course been possible
to provide domain-knowledge to neural networks by employ-
ing domain-specific features devised by an expert. However,
we focus here on ways in which domain-knowledge encoded
as rules in propositional logic has been used to constrain the
structure or parameters of models constructed by a network.
Techniques for automatic construction of Boolean-valued
features from relational domain-knowledge have a long his-
tory in the field of ILP [Muggleton and de Raedt, 1994;
Muggleton er al., 2012; Cropper et al., 2020], originating
from the LINUS [Lavra¢ et al., 1991]. Often called propo-
sitionalisation, the approach involves the construction of fea-
tures that identify the conditions under which they take on
the value 1 (or 0). For example, given (amongst other things)
the definition of benzene rings and of fused rings, an ILP-
based propositionalisation may construct the Boolean-valued
feature that has the value 1 if a molecule has 3 fused ben-
zene rings, and O otherwise. The values of such Boolean-
valued features allows us to represent a data instance (like
a molecule) as a Boolean-valued feature-vector, which can
then provided to a neural network. There is a long history of
propositionalisation: see [Kramer et al., 2001] for a review of
some of early use of this technique, and [Lavrac er al., 2020;
Vig et al., 2017] who examine the links between proposi-
tionalisation and modern-day use of embeddings in neural-
networks.

A direct application of propositionalisation, demonstrating
its utility for deep networks has been its use in Deep Rela-
tional Machines [Lodhi, 2013]. A DRM is a deep fully-
connected neural network with Boolean-valued inputs ob-
tained from propositionalisation by an ILP engine. In [Dash
et al., 2018], Boolean-valued features from an ILP engine are
sampled from a large space of possible features. The sam-
pling technique is refined further in [Dash et al., 2019].

The idea of propositionalisation also forms the founda-
tion for a method known as ‘Bottom Clause Propositional-
isation (BCP)’ to propositionalise literals of a most-specific
clause, or “bottom-clause” in ILP. Given a data instance,
the bottom-clause is the most-specific first-order clause that
entails the data instance, given some domain-knowledge.
Loosely speaking, the most-specific clause can be thought of
“enriching” the data instance with all domain relations that
are true, given the data instance. The construction of such
most-specific clauses and their subsequent use in ILP was in-
troduced in [Muggleton, 1995]. CILP++ [Franga et al., 2014]
uses bottom-clauses for data instances to construct feature-
vectors for neural networks. This is an extension to CIL2P.
Here the neural network has recurrent connections.

Propositionalisation has conceptual and practical limita-
tions. Conceptually, there is no variable-sharing between two
or more first-order logic features [Dash et al., 2018]. That
is, all useful compositions have to be pre-specified. Prac-
tically, this makes the space of possible features extremely
large: this has meant that the feature-selection has usually
been done separately from the construction of the neural net-
work. In this context, another work that does not employ
either propositionalisation or network augmentation consid-
ers a combination of symbolic knowledge represented in first-
order logic with matrix factorization techniques [Rocktéschel



et al., 2015]. This exploits dependencies between textual pat-
terns to generalise to new relations.

Recent work on neural-guided program synthesis also ex-
plicitly includes domain-specific relations. Here programs
attempt to construct automatically compositions of func-
tional primitives. The primitives are represented as frag-
ments of functional programs that are expected to be relevant.
An example of neural-guided program synthesis that uses
such domain-primitives is DreamCoder [Ellis ez al., 2018;
Ellis et al., 2020]. DreamCoder receives as inputs, the par-
tial specification of a function in the form of some inputs—
output pairs, and a set of low-level primitives represented in a
declarative language. Higher-level domain-concepts are then
abduced as compositions of these primitives via a neurally-
guided search procedure based on a version of Bayesian
“wake-sleep” algorithm [Hinton ef al., 1995]. The deep net-
works use a (multi-hot) Boolean-vector encoding to repre-
sent functional compositions (a binary digit is associated with
each primitive function, and takes the value 1 if and only if
the primitive is used in the composite function).

2.2 Binary and n-ary Relations

An influential form of representing relational domain-
knowledge takes the form knowledge graph, which are la-
belled graphs, with vertices representing entities and edges
representing binary relations between entities. We refer the
reader to [Hogan et al., 2020] to a comprehensive survey of
this form of representation for domain-knowledge.

Incorporation of the information in a knowledge-graph into
deep neural models—termed “knowledge-infused learning”—is
described in [Kursuncu et al., 2019; Sheth et al., 2019]. This
aims to incorporate binary relations contained in application-
independent sources (like DBPedia, Yago, WikiData) and
application-specific sources (like SNOMED-CT, DataMed).
The work examines techniques for incorporating relations at
various layers of deep-networks (the authors categorise these
as “shallow”, “semi-deep” and “deep” infusion). In the case
of shallow infusion, both the external knowledge and the
method of knowledge infusion is shallow, utilising syntac-
tic and lexical knowledge in the form of word embedding
models. In semi-deep infusion, external knowledge is in-
volved through attention mechanisms or learnable knowledge
constraints acting as a sentinel to guide model learning, and
deep infusion employs a stratified representation of knowl-
edge representing different levels of abstractions in different
layers of a deep learning model, to transfer knowledge that
aligns with the corresponding layer in the layered learning
process.

Knowledge graphs can be encoded directly for use by a
graph neural network (GNN). The computational machinery
available in GNN then aggregates and combines the informa-
tion available in the knowledge graph. The final collected
information from this computation could be used for further
predictions. Some recent works are in [Park er al., 2019;
Wang et al., 2019], where a GNN is used for estimation
of node importance in a knowledge-graph. The intuition is
that the nodes (in a problem involving recommender systems,
as in [Wang er al., 2019], a node represents an entity) in
the knowledge graph can be represented with an aggregated

neighbourhood information with bias while adopting the cen-
tral idea of aggregate-and-combine in GNNs. The very idea
of encoding a knowledge graph directly for a GNN is also
used in Knowledge-Based Recommender Dialog (KBRD)
framework developed for recommender systems [Chen e al.,
2019]. In this work, the authors treat an external knowledge
graph, such as DBpedia [Lehmann ez al., 2015], as a source of
domain-knowledge allowing entities to be enriched with these
knowledge. The authors found that the introduction of such
knowledge in the form of knowledge graph can strengthen the
recommendation performance significantly and can enhance
the consistency and diversity of the generated dialogs.

Going beyond binary relations and treating n-ary relations
as hyperedges, a technique called vertex enrichment is pro-
posed in [Dash et al., 2021b]. Vertex-enrichment is a sim-
plified approach for the inclusion of domain-knowledge into
standard graph neural networks (GNNs). The approach in-
corporates first-order background relations by augmenting
the features associated with the nodes of a graph provided
to a GNN. The results reported in [Dash et al., 2021b]
show significant improvements in the predictive accuracy
of GNNs across a large number datasets. The simplifi-
cation used in vertex-enrichment has been made unneces-
sary in a recent proposal for transforming the most-specific
clause constructed by ILP systems employing mode-directed
inverse entailment (MDIE [Muggleton, 1995]). The trans-
formation converts this clause into a graph can be directly
used by any standard GNN [Dash er al., 2021al. Specifi-
cally, the transformation results in a labelled bipartite graph
consisting of vertices representing predicates (including do-
main predicates) and ground terms. This approach reports
better predictive performance than those reported in [Dash
et al., 2021b], and includes knowlede-graphs as a special
case. Most recently, this method has been combined suc-
cessfully with deep generative sequence models for generat-
ing target-specific molecules, which demonstrates yet another
real-world use-case of incorporating domain knowledge into
deep networks [Dash er al., 2021c].

3 Transforming the Loss Function

One standard way of incorporating domain-knowledge into
a deep network is by introducing “penalty” terms into the
loss (or utility) function that reflect constraints imposed
by domain-knowledge. The optimiser used for model-
construction then minimises the overall loss that includes
the penalty terms. Fig. 5 shows a simple block diagram
where a new loss term is introduced based on the background
knowledge. We distinguish two kinds of domain constraints—
syntactic and semantic—and describe how these have been
used to introduce penalty terms into the loss function.

3.1 Syntactic Loss

The usual mechanism for introducing syntactic constraints is
to introduce one or more regularisation terms into the loss
function. The most common form of regularisation intro-
duces penalities based on model complexity (number of hid-
den layers, or number of parameters and so on: see for exam-
ple, [Kukacka et al., 2017]).
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Figure 5: Introducing background knowledge into deep network by
transforming the loss function L. 7 block takes an input loss L
and outputs a new loss function L’ by transforming (augmenting or
modifying) L based on background knowledge (BK). The learner
L then constructs a deep model using the original data D and the
new loss function L'.

A more elaborate form of syntactic constraints involves
the concept of embeddings. Embeddings refer to the rela-
tively low-dimensional learned continuous vector representa-
tions of discrete variables. Penalty terms based on “regular-
ising embeddings” are used to encode syntactic constraints
on the complexity of embeddings. [Fu, 1995] was an early
work in this direction, in which the authors proposed a strat-
egy to establish constraints by designating each node in a
Hopfield Net to represent a concept and edges to represent
their relationships and learn these nets by finding the solution
which maximises the greatest number of these constraints.
[Rocktischel et al., 2014] was perhaps the first method of reg-
ularising embeddings from declarative knowledge encoded in
first-order logic. The proposal here is for a mapping between
logical statements and their embeddings, and logical infer-
ences and matrix operations. That is, the model behaves as
if it is following a complex first-order reasoning process, but
operates at the level of simple vectors and matrix representa-
tions. [Rocktischel er al., 2015] extended this to regularisa-
tion by addition of differentiable loss terms to the objective-
based on propositionalisation of each first-order predicate.
Guo et al. [Guo et al., 2016] proposed a joint model, called
KALE, which embeds facts from knowledge graphs and log-
ical rules simultaneously. Here, the facts are represented as
ground atoms with a calculated truth value in [0, 1] suggest-
ing how likely that the fact holds. Logical rules (in grounded
form) are then interpreted as complex formulae constructed
by combining ground atoms with logical connectives, which
are then modelled by fuzzy t-norm operators [Hajek, 2013].
The truth value that results from this operation is nothing but
a composition of the constituent ground atoms, allowing the
facts from the knowledge graph to be incorporated into the
model.

[Li and Srikumar, 2020] develop a method to constraint
individual neural layers using soft logic based on massively
available declarative rules in ConceptNet. [Hamilton ef al.,
2018] incorporates first-order logic into low dimensional
spaces by embedding graphs nodes and represents logical
operators as learned geometric relations in the space. [De-
meester et al., 2016] proposed ordering of embedding space

based on rules mined from WordNet and found it to better
prior knowledge and generalisation capabilities using these
relational embeddings. [Li et al., 2018] show that domain-
based regularisation in loss function can also help in con-
structing deep networks with less amount of data in predic-
tion problems concerned with cloud computing. In [Takeishi
and Akimoto, 2018], a knowledge-based distant regularisa-
tion framework was proposed, in which distance domain in-
formation encoded in a knowledge graph was utilised. It
defines prior distributions of model parameters using knowl-
edge graph embeddings. They show that this results in an op-
timisation problem for a regularised factor analysis method.

3.2 Semantic Loss

Penalty terms can also be introduced on the extent to which
the model’s prediction satisfies semantic domain constraints.
For example, the domain may impose specific restrictions
on the prediction (“output prediction must be in the range
3...67). One way in which such information is provided
is in the form of domain-constraints. Penalty terms are then
introduced based on the number and importance of such con-
straints that are violated.

A recent work that is based on loss function is in [Xu et al.,
2018]. Here the authors propose a semantic loss that signifies
how well the outputs of the deep network matches some given
constraints encoded as propositional rules. The general intu-
ition behind this idea is that the semantic loss is proportional
to a negative logarithm of the probability of generating a state
that satisfies the constraint when sampling values according
to some probability distribution. This kind of loss function
is particularly useful for semi-supervised learning as these
losses behave like self-information and are not constructed
using explicit labels and can thus utilize unlabelled data.

[Hu et al., 2016] proposed a framework to incorporate first-
order logic rules with the help of an iterative distillation pro-
cedure that transfers the structured information of logic rules
into the weights of neural networks. This is done via a modi-
fication to the knowledge-distillation loss proposed by Hinton
et al. [Hinton er al., 2015]. The authors show that taking this
loss-based route of integrating rule-based domain-knowledge
allows the flexibility of choosing a deep network architecture
suitable for the intended task.

In [Fischer er al., 2019], authors construct a system for
training a neural network with domain-knowledge encoded as
logical constraints. Here the available constraints are trans-
ferred to a loss function. Specifically, each individual logic
operation (such as negation, and, or, equality etc.) is trans-
lated to a loss term. The final formulation results in an opti-
misation problem. The authors extract constraints on inputs
that capture certain kinds of convex sets and use them as op-
timisation constraints to make the optimisation tractable. In
the developed system, it is also possible to pose queries on
the model to find inputs that satisfy a set of constraints. In
a similar line, [Muralidhar et al., 2019] proposed domain-
adapted neural networks (DANN) that works with a balanced
loss function at the the intersection of models based on purely
domain-based loss or purely inductive loss. Specifically, they
introduce a domain-loss term that requires a functional form
of approximation and monotonicity constraints. Without de-



tailing much on the underlying equations, it suffices to say
that formulating the domain loss using these constraints en-
forces the model to learn not only from training data but also
in accordance with certain accepted domain rules.

Another popular approach that treats domain knowledge as
‘domain constraints’ is semantic based regularisation [Dili-
genti et al., 2017a; Diligenti et al., 2017b]. Tt builds stan-
dard multilayered neural networks (e.g. MLP) having kernel
machines at the input layer dealing with continuous-valued
features. The output of the kernel machines is input to the
higher layers implementing a fuzzy generalisation of the do-
main constraints that are represented in first-order logic. The
regularisation term, consisting of a sum of fuzzy generalisa-
tion of constraints using t-norm operations, in the cumulative
loss then penalises each violation of the constraints during
the training of the deep network. [Silvestri et al., 2020] inject
domain knowledge at training time via an approach that com-
bines semantic based regularisation and constraint program-
ming [Rossi ef al., 2006]. This approach uses the concept
of ‘propagators’, which is inherent in constraint program-
ming to identify infeasible assignments of variables to values
in the domain of the variables. The role of semantic based
regularisation is to then penalise these infeasible assignments
weighted by a penalty parameter.

4 Transforming the Model

Over the years, many studies have shown that domain knowl-
edge can be incorporated into a deep network by introducing
constraints on the model parameters (weights) or by making
a design choice of its structure. Fig. 6 shows a simple block
diagram showing domain knowledge incorporation at the de-
sign stage of the deep network.

4.1 Constraints on Parameters

In a Bayesian formulation, there is an explicit mechanism for
the inclusion of domain-knowledge through the use of priors.
The regularisation terms in loss-functions, for example, can
be seen as an encoding of such prior information, usually on
the network’s structure. Priors can also be introduced on the
parameters (weights) of a network. Explicitly, these would
take the form of a prior distribution over the values of the
weights in the network. The priors on networks and network
weights represent our expectations about networks before re-
ceiving any data, and correspond to penalty terms or regu-
larisers. Buntine and Weigend [Buntine and Weigend, 1991]
extensively study how Bayesian theory can be highly relevant
to the problem of training feedforward neural networks. This
work is explicitly concerned with choosing an appropriate
network structure and size based on prior domain-knowledge
and with selecting a prior the weights.

The work by [Neal, 1995] on Bayesian learning for neu-
ral networks also showed how domain-knowledge could help
build a prior probability distribution over neural network pa-
rameters. In this, the shown priors allow networks to be “self-
regularised” to not over-fit even when complexity of the neu-
ral network is increased. In a similar spirit, [Krupka and
Tishby, 2007] showed how prior domain knowledge could
be used to define ‘meta-features’ that can aid in defining the

prior distribution of weights. These meta-features are addi-
tional information about each of the features in the available
data. For instance, for an image recognition task, the meta-
feature could be the relative position of a pixel (z,y) in the
image. This meta information can be used to construct a prior
over the weights for the original features.

Transfer Learning

Transfer Learning is a mechanism to introduce priors on
weights when data is scarce for a problem (usually called
the “target” domain). Transfer learning relies on the avail-
ability of data for a problem that is similar to the target do-
main (usually called the “source” domain). Transfer learning
from a source domain to a target domain involves a transfer
of weights from models constructed for the source domain to
the network in the target domain. This has been shown to
boost performance significantly. From the Bayesian perspec-
tive, transfer learning allows the construction of the prior over
the weights of a neural network for the target domain based
on the posterior constructed in the source domain. Transfer
learning is not limited by the kind of task (such as classifica-
tion, regression, etc) but rather by the availability of related
problems. Language models are a very successful example
of the use of transfer learning, where the models are initially
learnt on a huge corpus of data and fine-tuned for other more
specialised tasks. [Zhuang et al., 2020] provides an in-depth
review of some of the mechanisms and the strategies of trans-
fer learning. Transfer learning need not be restricted to deep
networks only: in a recent study, [Liu et al., 2018] proposes
a model that transfers knowledge from a neural network to
a decision tree using knowledge distillation framework. The
symbolic knowledge encoded in the decision tree could fur-
ther be utilised for a variety of tasks.

4.2 Specialised Structures

DNN based methods arguably work best if the
domain-knowledge is used to inspire their architecture
choices [Berner er al., 2021]. There are reports on incor-
porating first-order logic constructs into the structure of the
network. This allows neural-networks to operate directly on
the logical sentences comprising domain-knowledge.
Domain-knowledge encoded as a set of propositional rules
are used to constrain the structure of the neural network.
Parameter-learning (updating of the network weights) then
proceeds as normal, using the structure. The result could
be thought of as learning weighted forms of the antecedents
present in the rules. The most popular and oldest work
along this line is Knowledge-Based Artificial Neural Network
(KBANN) [Towell et al., 1990] that incorporates knowledge
into neural networks. In KBANN, the domain knowledge is
represented as a set of hierarchically structured propositional
rules that directly determines a fixed topological structure of
a neural network [Towell and Shavlik, 1994]. KBANN was
successful in many real-world applications; but, its represen-
tational power was bounded by pre-existing set of rules which
restricted it to refine these existing rules rather than discover-
ing new rules. A similar study is KBCNN [Fu, 1993], which
first identifies and links domain attributes and concepts con-
sistent with initial domain knowledge. Further, KBCNN in-



= [«—D

<«<—BK

<—3
€< Q<

-

earne

(L)

|

L
(a)

=

D—> —>M

BK—>

D—> —>M

(b)

Figure 6: Introducing background knowledge into deep network by transforming the model (structure and parameter). In (a), the transforma-
tion block 7 takes a input structure of a model 7 and outputs a transformed structure 7’ based on background knowledge (BK). In (b), the
transformation block 7 takes a set of parameters 6 of a model and outputs a transformed set of parameters 7’ based on background knowledge

(BK).

troduces additional hidden units into the network and most
importantly, it allowed decoding of the learned rules from
the network in symbolic form. However, both KBANN and
KBCNN were not appropriate for learning new rules because
of the way the initial structure was constructed using the ini-
tial domain knowledge base.

Some of the limitations described above could be over-
come with the proposal of a hybrid system by Fletcher and
Obradovic [Fletcher and Obradovic, 1993]. The system was
able to learn a neural network structure that could construct
new rules from an initial set of rules. Here, the domain
knowledge is transformed into an initial network through
an extended version of KBANN’s symbolic knowledge en-
coding. It performed incremental hidden unit generation
thereby allowing construction or extension of initial rule-
base. In a similar manner, there was a proposal for using
Cascade ARTMAP [Tan, 1997] which could not only con-
struct a neural network structure from rules but also perform
explicit cascading of rules and multistep inferencing. It was
found that the rules extracted from Cascade ARTMAP are
more accurate and much cleaner than the rules extracted from
KBANN [Towell and Shavlik, 1993].

In the late 1990s, Garcez and Zaverucha proposed a mas-
sively parallel computational model called CIL2P based on
feedforward neural network that integrates inductive learn-
ing from examples and domain knowledge, expressed as a
propositional logic program [Avila Garcez and Zaverucha,
1999]. A translation algorithm generates a neural network.
Unlike KBANN, the approach uses the notion of “bipolar
semi-linear” neurons. This allows the proof of a form of cor-
rectness, showing the existence of a neural-network structure
that can compute the logical consequences of the domain-
knowledge. The output of such a network, when com-
bined into subsequent processing naturally incorporates the
intended interpretation of the domain predicates. The authors

extend this to the use of first-order logic programs: we con-
sider this in a later section.

A recent proposal focuses on embedding symbolic knowl-
edge expressed as logical rules [Xie et al., 2019]. Tt considers
two languages of representations: Conjuctive Normal Form
(CNF) and decision-Deterministic Decomposable Negation
Normal form (d-DNNF), which can naturally be represented
as graph structures. The graph structures can be provided to a
graph neural network (GNN) to learn an embedding suitable
for further task-specific implementations.

Somewhat in a similar vein to the work by [Avila Garcez
and Zaverucha, 1999], the work reported in [Xu er al., 2018]
considers as a set of propositional statements representing do-
main constraints. A deep network is then trained to find sat-
isfying assignments for the constraints. Again, once such a
network is constructed, it can clearly be used in subsequent
processing, capturing the effect of the domain constraints.
The network is trained using a semantic loss that we have
described in Sec. 3.2.

In [Li and Srikumar, 2020] it is proposed to augment a
language model that uses a deep net architecture with addi-
tional statements in first-order logic. Thus, given domain-
knowledge encoded as first-order relations, connections are
introduced into the network, based on the logical constraints
enforced by the domain-relations. The approach is related
somewhat to the work in [Sourek et al., 2018a] that does not
explicitly consider the incorporation of domain-knowledge
but does constrain a deep neural network’s structure by first
grounding a set of weighted first-order definite clauses and
then turning them into propositional programs.

We note that newer areas are emerging that use representa-
tions for domain-knowledge that go beyond first-order logic
relations. This includes probabilistic first-order logic, as a
way of including uncertain domain-knowledge [Manhaeve et
al., 2018]. One interesting way this is being used is to con-



strain the training of “neural predicates”, which represent
probabilistic relations that are implemented by neural net-
works, and the framework can be trained in an end-to-end
fashion [Manhaeve et al., 2018; Winters et al., 2021]. In
DeepProbLog [Manhaeve er al., 2018], for example, high-
level logical reasoning can be combined with sub-symbolic
discriminative power of deep networks. For instance, a logic
program for adding two digits and producing the output sum
is straightforward. However, what if the inputs are images
of the corresponding digits? Here, a deep network is used to
map an image to a digit, while a (weighted) logic program,
written in ProbLog [De Raedt er al., 2007], for addition is
treated as symbolic domain knowledge. The ProbLog pro-
gram is extended with a set of ground neural predicates for
which the weights correspond to the probability distribution
of classes of digits (0 ...9). The parameters (weights of predi-
cates and weights of neural network) are learned in an end-to-
end fashion. A recent approach called DeepStochLog [Win-
ters et al., 2021] is a framework that extends the idea of
neural predicates in DeepProbLog to definite clause gram-
mars [Pereira and Warren, 1980]. Reader may note that al-
though DeepProbLog and DeepStochLog do not really trans-
form the structure of the deep network, we are still consider-
ing these method under the heading of specialised structures.
This is because of the fact that the hybrid architecture is a
tightly coupled approach combining probabilistic logic and
deep neural networks.

One of the approaches involves transformation of proba-
bilistic logic program to graph-structured representation. For
instance, in kLog [Frasconi et al., 2014] the transformed
representation is an undirected bipartite graph in the form
of ‘Proabilistic Entity-Relationship model’ [Heckerman et
al., 2007] which allows the use of a graph-kernel [Vish-
wanathan et al., 2010] for data classification purpose, where
each data instance is represented as a logic program con-
structed from data and background-knowledge. Another
approach uses weighted logic programs or templates with
GNNs [Sourek er al., 2020] demonstrating how simple re-
lational logic programs can capture advanced graph convo-
lution operations in a tightly integrated manner. However, it
requires use of a language of Lifted Relational Neural Net-
works (LRNNGs) [Sourek et al., 2018b].

An interesting proposal is to transform facts and rules, all
represented in (weighted) first-order logic into matrix (or ten-
sor) representations. Learning and inference can then be con-
ducted on these matrices (or tensors) [Serafini and Garcez,
2016; Cohen er al., 2020] allowing faster computation. Neu-
ralLog [Guimardes and Costa, 20211, for example, extends
this idea and constructs a multilayered neural network, to
some extent, similar to the ones in LRNN consisting of fact
layer, rule layer and literal layer etc. The learning here refers
to the updates of the weights of the rules. Another work
that translates domain-knowledge in first-order logic into a
deep neural network architecture consisting of input layer
(grounded atoms), propositional layer, quantifier layer and
output layer is [Diligenti et al., 2017al. Similar to LRNN,
it uses the fuzzy ¢-norm operator for translating logical OR
and AND operations.

Further emerging areas look forward to providing domain-

knowledge as higher-order logic templates (or “meta-rules”:
see [Cropper et al., 2020] for pointers to this area). To the best
of our knowledge, there are, as yet, no reports in the literature
on how such higher-order statements can be incorporated into
deep networks.

5 Challenges and Concluding Remarks

We summarise our discussion on domain-knowledge as con-
straints in Table 1. We now outline some challenges in incor-
porating domain-knowledge encoded as logical or numerical
constraints into a deep network. We first outline some imme-
diate practical challenges concerning the logical constraints:

e There is no standard framework for translating logical
constraints to neural networks. While there are simplifi-
cation methods which first construct a representation of
the logical constraint that a standard deep network can
consume, this process has its limitations as described in
the relevant section above.

* Logic is not differentiable. This does not allow using
standard training of deep network using gradient based
methods in an end-to-end fashion. Propagating gradients
via logic has now been looked at in [Evans and Grefen-
stette, 2018], but the solution is intractable and does not
allow day-to-day use.

* Many neural network structures are directed acyclic
graphs (DAGs). However, transforming logical formula
directly into neural network structures in the manner de-
scribed in some of the discussed works can introduce
cyclic dependencies, which may need a separate form of
translations.

There are also practical challenges concerning the numerical
constraints:

¢ We have seen that the numerical constraints are often
provided with the help of modification to a loss func-
tion. Given some domain-knowledge in a logical rep-
resentation, constructing a term in loss function is not
straight-forward.

* The process of introducing a loss term often results in a
difficult optimisation problem (sometimes constrained)
to be solved. This may require additional mathematical
tools for a solution that can be implemented practically.

* Deep network structures constrained via logical domain-
knowledge may not always be scalable large datasets.

The Domain-Knowledge Grand Challenge

Incorporating domain-knowledge into learning is highlighted
in [Stevens et al., 2020] as one of the Grand Challenges fac-
ing the foundations of Al and ML. The principal difficulties
raised in that report are these:

* “Can the constructed deep network model be trusted?”
This question involves long-standing discussions on ex-
plainability and interpretability of deep models. It also
includes the question of whether data used for construct-
ing the deep model contains sufficient information with-
out introducing spurious correlations or bias that would
invalidate the model itself.



Principal Approach Work (Reference) Type of Learner

Transforming Data DRM [Lodhi, 2013; Dash et al., 2018] MLP
CILP++ [Franga et al., 2014] MLP
KGCN [Wang et al., 2019] GNN
KBRD [Chen et al., 2019] GNN
DreamCoder [Ellis et al., 2020] DNN*
VEGNN [Dash et al., 2021b] GNN
BotGNN [Dash er al., 2021al GNN
Transforming Loss IPKFL [Krupka and Tishby, 2007] CNN
ILBKRME [Rocktischel ef al., 2015] MLP

HDNNLR [Hu et al., 2016] CNN, RNN
SBR [Diligenti erf al., 2017al MLP
SBR [Diligenti et al., 2017b] CNN
DL2 [Fischer et al., 2019] CNN
Semantic Loss [Xu et al., 2018] CNN
LENSR [Xie et al., 2019] GNN
Transforming Model KBANN [Towell and Shavlik, 1994] MLP

Cascade-ARTMAP [Tan, 1997] ARTMAP

CIL?P [Avila Garcez and Zaverucha, 1999] RNN
DeepProbLog [Manhaeve et al., 2018] CNN
LRNN [Sourek et al., 2018b] MLP
TensorLog [Cohen et al., 2020] MLP
NeuralLog [Guimaries and Costa, 2021] MLP
DeepStochLog [Winters ef al., 2021] DNN*

Table 1: Some selected works, in no particular order, showing the principal approach of domain knowledge inclusion into deep neural
networks. For each work referred here, we show the type of learner with following acronyms: Multilayer Perceptron (MLP), Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN), Graph Neural Network (GNN), Adaptive Resonance Theory-based Network Map
(ARTMAP), DNN* refers to a DNN structure dependent on intended task. We use ‘MLP” here to represent any neural network, that conforms

to a layered-structure that may or maynot be fully-connected.

* “Why does the Al model work for a problem?” To ad-
dress this question, there has to be some mapping be-
tween the internal representations of the model and the
domain-specific concepts. In [Futia and Vetro, 2020],
authors identify that the knowledge mapping of the deep
learning components, including input features, hidden
unit and layers, and output predictions with domain-
knowledge could lead to an understandable model.

Going Beyond Prediction

The issues raised above go beyond just the “how” ques-
tions related to the incorporation of domain-knowledge into
deep networks. They provide pointers to why the use of
domain-knowledge may extend beyond its utility for predic-
tion. Domain-knowledge can also play a role in aspects like
explanation and fairness. We mention some of the challenges
that result.

One important requirement of machine-constructed mod-
els in workflows with humans-in-the-loop is that the models
are human-understandable. Domain-knowledge can be used
in two different ways to assist this. First, it can constrain
the kinds of models that are deemed understandable. Sec-
ondly, it can provide concepts that are meaningful for use in
a model. Most of the work in this review has been focussed
on improving predictive performance. However, the role of
domain-knowledge in constructing explanations for deep net-

work models is also being explored (see for example, [Srini-
vasan et al., 2019]). However, that work only generates post
hoc explanations that are locally consistent. Explanatory deep
network models that identify true causal connections based
on concepts provided as domain-knowledge remain elusive.

Domain-knowledge can also be used to correct bi-
ases [Mehrabi et al., 2021] built into a deep network either
declaratively, through the use of constraints, or through the
use of loss functions that include ‘“ethical penalty” terms.
Demonstrations of the use of domain-knowledge driven,
ethics-sensitive machine learning have been available in the
literature for some time [Anderson et al., 2005]. Can these
carry over to the construction of deep network models? This
remains to be investigated.

Finally, the rapid progress in the area of language models,
for example, the models based on attention [Vaswani et al.,
2017; Brown et al., 2020] raises the possibility of providing
domain-knowledge in forms other than logical or numerical.
While the precision of these formal representations may con-
tinue to be needed for the construction of scientific assistants,
their role in representing commonsense knowledge is less ev-
ident. Day-to-day machine assistants that can incorporate in-
formal knowledge of the world will be needed. Progress in
this is being made (see for example, https://allenai.org/aristo),
but there is much more that needs to be done to make the lan-
guage models required accessible to everyday machinery.


https://allenai.org/aristo

References

[Anderson et al., 2005] Michael Anderson, S. Anderson, and Chris
Armen. Medethex: Toward a medical ethics advisor. In AAAI
Fall Symposium: Caring Machines, 2005.

[Arrieta et al., 2019] Alejandro Barredo Arrieta, Natalia Diaz-
Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador Garcia, Sergio Gil-Lépez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco Her-
rera. Explainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward responsible ai.
arXiv preprint arXiv:1910.10045, 2019.

[Avila Garcez and Zaverucha, 1999] Artur S. Avila Garcez and
Gerson Zaverucha. Connectionist inductive learning and logic
programming system. Applied Intelligence, 1999.

[Berner er al., 2021] Julius Berner, Philipp Grohs, Gitta Kutyniok,
and Philipp Petersen. The modern mathematics of deep learning.
arXiv preprint arXiv:2105.04026, 2021.

[Besold et al., 2017] Tarek R Besold, Artur d’Avila Garcez, Se-
bastian Bader, Howard Bowman, Pedro Domingos, Pascal
Hitzler, Kai-Uwe Kiihnberger, Luis C Lamb, Daniel Lowd,
Priscila Machado Vieira Lima, et al. Neural-symbolic learn-
ing and reasoning: A survey and interpretation. arXiv preprint
arXiv:1711.03902, 2017.

[Brown et al., 2020] Tom B Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[Buntine and Weigend, 1991] Wray L. Buntine and A. Weigend.
Bayesian back-propagation. Complex Syst., 5, 1991.

[Chen et al., 2019] Qibin Chen, Junyang Lin, Yichang Zhang,
Ming Ding, Yukuo Cen, Hongxia Yang, and Jie Tang. Towards
knowledge-based recommender dialog system. arXiv preprint
arXiv:1908.05391, 2019.

[Cohen er al., 2020] William Cohen, Fan Yang, and Kathryn Rivard
Magzaitis. Tensorlog: A probabilistic database implemented us-
ing deep-learning infrastructure. Journal of Artificial Intelligence
Research, 67:285-325, 2020.

[Cropper et al., 2020] Andrew Cropper, Sebastijan Dumancié, and
Stephen H. Muggleton. Turning 30: New ideas in inductive logic
programming. In Christian Bessiere, editor, Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI-20, pages 4833-4839, 2020.

[Dash et al., 2018] Tirtharaj Dash, Ashwin Srinivasan, Lovekesh
Vig, Oghenejokpeme I Orhobor, and Ross D King. Large-scale
assessment of deep relational machines. In International Confer-
ence on Inductive Logic Programming, pages 22-37. Springer,
2018.

[Dash et al., 2019] Tirtharaj Dash, Ashwin Srinivasan, Ram-
prasad S Joshi, and A Baskar. Discrete stochastic search and
its application to feature-selection for deep relational machines.
In International Conference on Artificial Neural Networks, pages
29-45. Springer, 2019.

[Dash et al., 2021a] Tirtharaj Dash, Ashwin Srinivasan, and
A Baskar. Inclusion of domain-knowledge into gnns using mode-
directed inverse entailment. arXiv preprint arXiv:2105.10709,
2021.

[Dash et al., 2021b] Tirtharaj Dash, Ashwin Srinivasan, and
Lovekesh Vig. Incorporating symbolic domain knowledge into
graph neural networks. Machine Learning, pages 1-28, 2021.

[Dash et al., 2021c] Tirtharaj Dash, Ashwin Srinivasan, Lovekesh
Vig, and Arijit Roy. Using domain-knowledge to assist lead dis-
covery in early-stage drug design. bioRxiv, 2021.

[De Raedt et al., 2007] Luc De Raedt, Angelika Kimmig, and
Hannu Toivonen. Problog: A probabilistic prolog and its appli-
cation in link discovery. In IJCAI, volume 7, pages 2462-2467.
Hyderabad, 2007.

[Demeester et al., 2016] T. Demeester, Tim Rocktischel, and
S. Riedel. Lifted rule injection for relation embeddings. ArXiv,
abs/1606.08359, 2016.

[Diligenti et al., 2017a] Michelangelo Diligenti, Marco Gori, and
Claudio Sacca. Semantic-based regularization for learning and
inference. Artificial Intelligence, 244:143-165, 2017.

[Diligenti et al., 2017b] Michelangelo Diligenti, Soumali Roy-
chowdhury, and Marco Gori. Integrating prior knowledge into
deep learning. In 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 920-923.
IEEE, 2017.

[Ellis er al., 2018] Kevin Ellis, Lucas Morales, Mathias Sabl
Meyer, Armando Solar-Lezama, and Joshua B Tenenbaum.
Dreamcoder:  Bootstrapping domain-specific languages for
neurally-guided bayesian program learning. In Proceedings of
the 2nd Workshop on Neural Abstract Machines and Program
Induction, 2018.

[Ellis er al., 2020] Kevin Ellis, Catherine Wong, Maxwell Nye,
Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt,
Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder:
Growing generalizable, interpretable knowledge with wake-sleep
bayesian program learning. arXiv preprint arXiv:2006.08381,
2020.

[Evans and Grefenstette, 2018] Richard Evans and Edward Grefen-
stette. Learning explanatory rules from noisy data. J. Artif. Intell.
Res., 61:1-64, 2018.

[Fischer et al., 2019] M. Fischer, Mislav Balunovic, Dana
Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin T.
Vechev. DI2: Training and querying neural networks with logic.
In ICML, 2019.

[Fletcher and Obradovic, 1993] Justin ~ Fletcher and  Zoran
Obradovic. Combining prior symbolic knowledge and
constructive neural network learning.  Comnection Science,
5(3-4):365-375, 1993.

[Franga er al., 2014] Manoel VM Franga, Gerson Zaverucha, and
Artur S d’Avila Garcez. Fast relational learning using bottom
clause propositionalization with artificial neural networks. Ma-
chine learning, 94(1):81-104, 2014.

[Frasconi et al., 2014] Paolo Frasconi, Fabrizio Costa, Luc
De Raedt, and Kurt De Grave. klog: A language for logical
and relational learning with kernels.  Artificial Intelligence,
217:117-143, 2014.

[Fu, 1993] L. M. Fu. Knowledge-based connectionism for revis-
ing domain theories. IEEE Transactions on Systems, Man, and
Cybernetics, 23(1):173-182, 1993.

[Fu, 1995] Li Min Fu. Introduction to knowledge-based neural net-
works. Knowledge-Based Systems, 1995.

[Futia and Vetrd, 2020] Giuseppe Futia and Antonio Vetrd. On the
integration of knowledge graphs into deep learning models for
a more comprehensible ai—three challenges for future research.
Information, 11(2), 2020.



[Garcez et al., 2012] Artur S d’Avila Garcez, Krysia B Broda, and
Dov M Gabbay. Neural-symbolic learning systems: foundations
and applications. Springer Science & Business Media, 2012.

[Guimaries and Costa, 2021] Victor Guimardes and Vitor Santos
Costa. Neurallog: a neural logic language. arXiv preprint
arXiv:2105.01442, 2021.

[Guo et al., 2016] Shu Guo, Quan Wang, Lihong Wang, Bin Wang,
and Li Guo. Jointly embedding knowledge graphs and logical
rules. In Proceedings of the 2016 conference on empirical meth-
ods in natural language processing, pages 192-202, 2016.

[Héjek, 2013] Petr Hajek. Metamathematics of fuzzy logic, vol-
ume 4. Springer Science & Business Media, 2013.

[Hamilton et al., 2018] William L. Hamilton, P. Bajaj, M. Zitnik,
Dan Jurafsky, and J. Leskovec. Embedding logical queries on
knowledge graphs. In NeurlIPS, 2018.

[Heckerman et al., 2007] David Heckerman, Chris Meek, and
Daphne Koller. Probabilistic entity-relationship models, prms,
and plate models. Introduction to statistical relational learning,
pages 201-238, 2007.

[Hinton et al., 1995] Geoffrey E Hinton, Peter Dayan, Brendan J
Frey, and Radford M Neal. The” wake-sleep” algorithm for unsu-
pervised neural networks. Science, 268(5214):1158-1161, 1995.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and Jeff

Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.
[Hogan et al., 2020] Aidan Hogan, Eva Blomqvist, Michael

Cochez, Claudia d’Amato, Gerard de Melo, Claudio Gutier-
rez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neu-
maier, Axel Polleres, et al. Knowledge graphs. arXiv preprint
arXiv:2003.02320, 2020.

[Hu et al., 2016] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu,
E. Hovy, and E. Xing. Harnessing deep neural networks with
logic rules. ArXiv, abs/1603.06318, 2016.

[Kitano, 2016] Hiroaki Kitano. Artificial intelligence to win the no-
bel prize and beyond: Creating the engine for scientific discovery.
Al magazine, 37(1):39-49, 2016.

[Kramer et al., 2001] Stefan Kramer, Nada Lavrac, and Peter Flach.
Propositionalization Approaches to Relational Data Mining,
pages 262-291. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001.

[Krupka and Tishby, 2007] Eyal Krupka and Naftali Tishby. Incor-
porating prior knowledge on features into learning. In AISTATS,
2007.

[Kukacka et al., 2017] Jan Kukacka, Vladimir Golkov, and Daniel
Cremers. Regularization for deep learning: A taxonomy. arXiv
preprint arXiv:1710.10686, 2017.

[Kursuncu et al., 2019] Ugur Kursuncu, Manas Gaur, and Amit
Sheth. Knowledge infused learning (k-il): Towards deep in-
corporation of knowledge in deep learning. arXiv preprint
arXiv:1912.00512, 2019.

[Lavrag et al., 1991] Nada Lavrac¢, SaSo Dzeroski, and Marko Gro-
belnik. Learning nonrecursive definitions of relations with li-
nus. In European Working Session on Learning, pages 265-281.
Springer, 1991.

[Lavrac et al., 2020] Nada Lavrac, Blaz Skrlj, and Marko Robnik-
Sikonja. Propositionalization and embeddings: two sides of the
same coin. Mach. Learn., 109(7):1465-1507, 2020.

[Lehmann et al., 2015] Jens Lehmann, Robert Isele, Max Jakob,
Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef, Soren Auer,
et al. Dbpedia—a large-scale, multilingual knowledge base ex-
tracted from wikipedia. Semantic web, 6(2):167-195, 2015.

[Li and Srikumar, 2020] Tao Li and Vivek Srikumar. Augmenting
neural networks with first-order logic. In ACL 2019 - 57th An-
nual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, 2020.

[Li et al., 2018] Lei Li, Min Feng, Lianwen Jin, Shenjin Chen, Li-
hong Ma, and Jiakai Gao. Domain knowledge embedding regu-
larization neural networks for workload prediction and analysis
in cloud computing. J. Inf. Technol. Res., 11(4):137-154, Octo-
ber 2018.

[Lipton, 2016] Zachary C. Lipton. The mythos of model inter-
pretability. arXiv preprint arXiv:1606.03490, 2016.

[Liu e al., 2018] Xuan Liu, Xiaoguang Wang, and Stan Matwin.
Improving the interpretability of deep neural networks with
knowledge distillation. arXiv preprint arXiv:1812.10924, 2018.

[Lodhi, 2013] Huma Lodhi. Deep relational machines. In Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics),
2013.

[Manhaeve ef al., 2018] Robin Manhaeve, Sebastijan Dumancic,
Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deep-
problog: Neural probabilistic logic programming. Advances in
Neural Information Processing Systems, 31:3749-3759, 2018.

[Mehrabi et al., 2021] Ninareh Mehrabi, Fred Morstatter, Nripsuta
Saxena, Kristina Lerman, and Aram Galstyan. A survey on
bias and fairness in machine learning. ACM Computing Surveys
(CSUR), 54(6):1-35, 2021.

[Muggleton and de Raedt, 1994] Stephen Muggleton and Luc de
Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19-20:629-679, 1994. Special
Issue: Ten Years of Logic Programming.

[Muggleton et al., 2012] Stephen Muggleton, Luc De Raedt, David
Poole, Ivan Bratko, Peter Flach, Katsumi Inoue, and Ashwin
Srinivasan. Ilp turns 20. Machine learning, 86(1):3-23, 2012.

[Muggleton, 1991] Stephen Muggleton. Inductive logic program-
ming. New generation computing, 8(4):295-318, 1991.

[Muggleton, 1995] Stephen Muggleton. Inverse entailment and
progol. New generation computing, 13(3-4):245-286, 1995.

[Muralidhar et al., 2019] Nikhil Muralidhar, Mohammad Raihanul
Islam, Manish Marwah, Anuj Karpatne, and Naren Ramakrish-
nan. Incorporating Prior Domain Knowledge into Deep Neural
Networks. In Proceedings - 2018 IEEE International Conference
on Big Data, Big Data 2018, 2019.

[Neal, 1995] Radford M. Neal. Bayesian Learning for Neural
Networks. PhD thesis, University of Toronto, CAN, 1995.
AAINNO02676.

[Park et al., 2019] Namyong Park, Andrey Kan, Xin Luna Dong,
Tong Zhao, and Christos Faloutsos. Estimating Node Impor-
tance in Knowledge Graphs Using Graph Neural Networks, page
596-606. Association for Computing Machinery, New York, NY,
USA, 2019.

[Pereira and Warren, 1980] Fernando CN Pereira and David HD
Warren. Definite clause grammars for language analysis—a sur-
vey of the formalism and a comparison with augmented transition
networks. Artificial intelligence, 13(3):231-278, 1980.



[Raedt et al., 2020] Luc de Raedt, Sebastijan Dumanc&ié, Robin
Manhaeve, and Giuseppe Marra. From statistical relational to
neuro-symbolic artificial intelligence. In Christian Bessiere, ed-
itor, Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, 1JCAI-20, pages 4943—-4950.
International Joint Conferences on Artificial Intelligence Organi-
zation, 7 2020. Survey track.

[Rocktischel et al., 2014] Tim Rocktischel, Matko Bosnjak,
Sameer Singh, and Sebastian Riedel. Low-dimensional em-
beddings of logic. In Proceedings of the ACL 2014 Workshop
on Semantic Parsing, pages 4549, Baltimore, MD, June 2014.
Association for Computational Linguistics.

[Rocktischel et al., 2015] Tim Rocktidschel, Sameer Singh, and Se-
bastian Riedel. Injecting logical background knowledge into em-
beddings for relation extraction. In Proceedings of the 2015
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
pages 1119-1129, Denver, Colorado, May—June 2015. Associa-
tion for Computational Linguistics.

[Rossi er al., 2006] Francesca Rossi, Peter Van Beek, and Toby
Walsh. Handbook of constraint programming. Elsevier, 20006.

[Serafini and Garcez, 2016] Luciano Serafini and Artur d’Avila
Garcez. Logic tensor networks: Deep learning and log-
ical reasoning from data and knowledge. arXiv preprint
arXiv:1606.04422, 2016.

[Sheth et al., 2019] A. Sheth, M. Gaur, U. Kursuncu, and R. Wick-
ramarachchi. Shades of knowledge-infused learning for enhanc-
ing deep learning. IEEE Internet Computing, 23(6):54-63, 2019.

[Silvestri et al., 2020] Mattia Silvestri, Michele Lombardi, and
Michela Milano. Injecting domain knowledge in neural net-
works: a controlled experiment on a constrained problem. arXiv
preprint arXiv:2002.10742, 2020.

[Sourek et al., 2018a] Gustav Sourek, Vojtech Aschenbrenner,
Filip Zelezny, Steven Schockaert, and Ondrej Kuzelka. Lifted
relational neural networks: Efficient learning of latent relational
structures. J. Artif. Intell. Res., 62:69—-100, 2018.

[Sourek ez al., 2018b] Gustav Sourek, Vojtech Aschenbrenner,
Filip Zelezny, Steven Schockaert, and Ondrej Kuzelka. Lifted
relational neural networks: Efficient learning of latent relational
structures. Journal of Artificial Intelligence Research, 62:69—
100, 2018.

[Sourek et al., 2020] Gustav Sourek, Filip Zelezny, and Ondrej
Kuzelka. Beyond graph neural networks with lifted relational
neural networks. arXiv preprint arXiv:2007.06286, 2020.

[Srinivasan er al., 2019] Ashwin Srinivasan, Lovekesh Vig, and
Michael Bain. Logical explanations for deep relational machines
using relevance information. Journal of Machine Learning Re-
search, 20(130):1-47, 2019.

[Stevens et al., 2020] Rick Stevens, Valerie Taylor, Jeff Nichols,
Arthur Barney Maccabe, Katherine Yelick, and David Brown. Ai
for science. Technical report, Argonne National Lab.(ANL), Ar-
gonne, IL (United States), 2020.

[Takeishi and Akimoto, 2018] Naoya Takeishi and Kosuke Aki-
moto. Knowledge-based distant regularization in learning proba-
bilistic models. arXiv preprint arXiv:1806.11332, 2018.

[Tan, 1997] Ah Hwee Tan. Cascade ARTMAP: Integrating neural
computation and symbolic knowledge processing. IEEE Trans-
actions on Neural Networks, 1997.

[Tomasev et al., 2020] Nenad TomaSev, Julien Cornebise, Frank
Hutter, Shakir Mohamed, Angela Picciariello, Bec Connelly,
Danielle CM Belgrave, Daphne Ezer, Fanny Cachat van der
Haert, Frank Mugisha, et al. Ai for social good: unlocking the op-
portunity for positive impact. Nature Communications, 11(1):1-
6, 2020.

[Towell and Shavlik, 1993] Geoffrey G Towell and Jude W Shavlik.
Extracting refined rules from knowledge-based neural networks.
Machine learning, 13(1):71-101, 1993.

[Towell and Shavlik, 1994] Geoffrey G Towell and Jude W Shav-
lik. Knowledge-based artificial neural networks. Artificial intel-
ligence, 70(1-2):119-165, 1994.

[Towell et al., 1990] Geofrey G Towell, Jude W Shavlik, and
Michiel O Noordewier. Refinement of approximate domain the-
ories by knowledge-based neural networks. In Proceedings of
the eighth National conference on Artificial intelligence, volume
861866. Boston, MA, 1990.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-

vances in neural information processing systems, pages 5998—
6008, 2017.

[Vig er al., 2017] Lovekesh Vig, Ashwin Srinivasan, Michael Bain,
and Ankit Verma. An investigation into the role of domain-
knowledge on the use of embeddings. In Nicolas Lachiche and
Christel Vrain, editors, Inductive Logic Programming - 27th In-
ternational Conference, ILP 2017, Orléans, France, September
4-6, 2017, Revised Selected Papers, volume 10759 of Lecture
Notes in Computer Science, pages 169—183. Springer, 2017.

[Vishwanathan ef al., 2010] S Vichy N Vishwanathan, Nicol N
Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201-1242,
2010.

[von Rueden et al., 2019] Laura von Rueden, Sebastian Mayer,
Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul
Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar
Ramamurthy, et al. Informed machine learning—a taxonomy and
survey of integrating knowledge into learning systems. arXiv
preprint arXiv:1903.12394, 2019.

[Wang et al., 2019] Hongwei Wang, Miao Zhao, Xing Xie, Wenjie
Li, and Minyi Guo. Knowledge graph convolutional networks
for recommender systems. In The World Wide Web Conference,
WWW ’19, page 3307-3313, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[Winters ef al., 2021] Thomas Winters, G. Marra, Robin Man-
haeve, and L. D. Raedt. Deepstochlog: Neural stochastic logic
programming. ArXiv, abs/2106.12574, 2021.

[Xie et al., 2019] Yaqi Xie, Ziwei Xu, Mohan S. Kankanhalli,
Kuldeep S. Meel, and Harold Soh. Embedding symbolic knowl-
edge into deep networks. In Advances in Neural Information Pro-
cessing Systems, 2019.

[Xu et al., 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang,
and Guy Van Den Broeck. A semantic loss function for deep
learning with symbolic knowledge. In 35th International Con-
ference on Machine Learning, ICML 2018, 2018.

[Zhuang et al., 2020] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan,
Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. A comprehensive survey on transfer learning. Proceedings
of the IEEE, 109(1):43-76, 2020.



	1 Introduction
	Focus of the Paper

	2 Transforming the Input Data
	2.1 Propositionalisation
	2.2 Binary and n-ary Relations

	3 Transforming the Loss Function
	3.1 Syntactic Loss
	3.2 Semantic Loss

	4 Transforming the Model
	4.1 Constraints on Parameters
	Transfer Learning

	4.2 Specialised Structures

	5 Challenges and Concluding Remarks

