Using Program Synthesis and Inductive Logic Programming

»

APPCAIR

to solve Bongard Problems

Atharv Sonwane*, Sharad Chitlangia*, Tirtharaj Dash, Lovekesh Vig,

Gautam Shroff and Ashwin Srinivasan

Bongard Problems

Visual Reasoning tasks with 6 positive and 6 negative
example images for a particular concept. Given the
examples images, the task is to find the differentiating
concept. For example -

Negative Examples Positive Examples
O QO O - V v

a /X A D O O
O S s a A <
A A O O 0

Concept: Triangles above squares.

We evaluate system on adaptations of: #4, #14, #16, #21,

#23, #24, #36, #40, #53, #60, #75, #85, #94 and #96 from
www.foundalis.com/res/bps

Solving reasoning tasks requires the use of suitable
representations which can encapsulate relevant concepts.
Such a representation should also allow flexibility in
abstraction formation at various levels in the hierarchy.

In our 3-staged inductive programming system, we use

decorated graphical programs to represent the images for
Bongard Problems. We postulate that this allows for formation

of concepts:

e At the first stage through invention by abstraction in
functional A-calculus programs using Dreamcoder. Such as

learning a polygon from line instructions.

® By allowing for additional methods of information

extraction from the solution program at the decoration
phase during a debugger style step-by-step execution of the

A-calculus programs.

e On top of the decorated functional A-calculus programs,

using logical programs, through Inductive Logic

Programming, to learn higher level concepts such as

Triangle above Square, Concavity / Convexity

Stage 1: Program Synthesis with Dreamcoder

: a [ _ ] Primitives

: q G Enumeration

- o’/ 0 1.2 _

o q q> o <}:' furt

- loo

q O O P

. [ D Li\bstraction] [Dreaming ] pen_up

; o _

12 4 AO Ny

: o ‘{}7 Learnt Library

: 0

| OA . A £1(a0) = A loop 3 (A fwrt a0. 120)

i T £3(a0) = X loop 4 (A fwrt a0. 90)
4 (0, 0)<_Initial state
: Solutions 0° at origin
program 1: L= F3(2)
; f3(2) — (square) (0 0)

f2(2, 90)

program 2:

according to

0
£1(1) ~ £2(2. 90) State changes
\ (move) (0, 2) primitive

YN

Decoration

£1(1) 90°

Stage 2: Program (triangle) Q (0, 2)

___________________

90° -
Encoding as Logical Clauses E

>l == /‘F

trace(p, [sO, sl1l, s2, s3]),
YU& has_info(pl, s0, none, [], [0, O, 0]),

has_dinfo(pl, si, 3, 121; [0, 0. 0]),
[ ILP ]<}:' has_info(pl, s2, f2, [2, 90], [0, 2. 90]),

407 Q?s_info(pl, s3, . D1l [0, 2: 90]): J}V é
_— Rule Stﬁge 3:
has_info(A, B, f3, C, [D, E, F]), GeTne?-:'t‘iyon
has_info(A, G, f1, H, [I, ], K]), with ILP

1> E.

. Synthesis: All positive and negative images for a Bongard

Problem are input to Dreamcoder to obtain a library of higher
level primitives and solution programs for each image

. Decoration: Each Program is converted into a decorated state

transition diagram via a debugger-styled execution.
Transitions are decorated with primitive calls and states with
information such as the position and orientation of the cursor
during the program execution.

. Theory ldentification: A FOL representation of the transitions

using has_1nfo and trace predicates, along with
comparison predicates, are input, as background knowledge,
to Aleph (an ILP Engine) to find a theory that differentiates
between the positives and negatives.

Predicate Definitions

has_info(+Program,-State, #Primitive,-Args,[-X,-Y,-Angle])
trace(+Program,[-state0®,-statel,-state2, ...])

Our system is able to solve 8 of the 14 Bongard Problems
considered. Some are illustrated below -

Concept

Anti-

Invented Primitives
(Dreamcoder)

f2(a0), f3(a0) : both

clockwise vs draw anti- clockwise

Clockwise spirals with different
step lengths and with a0®
BP #16 controlling tightness of
the spiral.
Smaller fl(a®, al):Drawan
shape a0-sided polygon with
present sides of length al
BP #21
Triangle f1(a0): Draws triangle
above of side length a0.
Square
f3(a0): Draws square
BP #36 of side length a0
Enclosed fi1(a®, al):Drawan
shape has a0-sided polygon with

fewer sides sides of length al

BP #53

Theory

pos(A) :-
has_info(A,B,f3,C,[D,E,F]).

pos(A) :-
has_info(A,B,f2,C,[D,E,F]).

pos(A): -
has_info(A,B,rtfwint,C, [D,E,
F1), C=[G|H], H=[I|3J], G>I,
has_info(A,K,f1,L,[D,E,F]).

pos(A):-
has_info(A,B,f1,C,[D,E,F]),
C=[G|H], H=[I|JI], G>I.

pos(A) : -
has_info(A,B,f3,C,[D,E,F]),
has_info(A,G,f1,H,[I,J,K]),
J>E.

pos(A) : -
has_info(A,B,f1,C,[D,E,F]),
has_info(A,R,pt,Q, [K,L,M]),
has_info(A,I,f1,J,[K,L,M]),
C=[G|H],J=[N|O],0=[P|Q],
G>N, N>P.

Explanation

Presence of invented
primitive for drawing spirals
that are anticlockwise.

Program contains a move
primitive where the division
factor for angle is greater
than multiplication factor for
distance, or there is a
polygon with side length less
than number of sides.
Indicating the shape is small.

Triangle exists with y
coordinate greater than that
of square

Smaller polygon (having
length of side smaller than
number of sides) has has
fewer sides than larger
(enclosing) polygon.

The main reasons where the system fails are -

e Representation: Inability to represent solid fills, arbitrary
curves and other irregular features using current DSL.

e Search: High number of shapes / lines to be drawn meaning
intractable search due to large program lengths of the solution.

Our work can be improved in 3 key areas:
e Graphical Program Synthesis:
o A learned metric for comparison rather than pixel level

comparison

o Execution-guided synthesis rather than enumeration
e State Decorations:

o Learned automated feature extractors to work on top of
produced programs/images.
e Final theory learning step:

o Construction of meta-rules among programs of different
problems to learn general concepts such as smallness, etc
o Construction of meta-rules, in the 2nd order, over
sub-programs of the same problem




