
Real Time Interfacing of Spiking Neural Networks
in SpineCreator

Sharad Chitlangia
Department of Electrical and Electronics Engineering

BITS Pilani K K Birla Goa Campus
f20170472@goa.bits-pilani.ac.in

Basabdatta Sen Bhattacharya
Department of Computer Science and Engineering

BITS Pilani K K Birla Goa Campus
basab@goa.bits-pilani.ac.in

Index Terms—Spiking Neural Networks, Real-time Interfacing,
SpineCreator, Network Server, Conductance neurons, DVS E-
retina, Izhikevich

I. INTRODUCTION

With the rise of Spiking Neural Network research and
their proven advantages over Artificial Neural Networks like
being more biologically plausible, researchers have started to
experiment with their real-world applications. Artificial Neural
Networks essentially act as complex function approximators.
They are used from editing photographs in Cameras to pre-
dicting really high stake algorithmic stock market trading
coefficients. Although Spiking Neural Networks are yet to beat
Artificial Neural Networks in every set of tasks, their applica-
tions in places where it’s possible is an exciting opportunity
and research area to explore. There already has been work
showing the advantages of Spiking Neural Network software
and hardware showing benefits like very low response time
[1]. To this end, we explore the real-time interfacing of an
up and coming software in Spiking Neural Network literature
SpineCreator [2]. SpineCreator allows for easy building of
Neural Network models through a GUI interface. Parameters,
State Variables and constants as well as their differential
equations and experiments can be easily specified and setup.
We test and show results of SpineCreator for its external
interfacing capabilities with different sets of test populations
and keep our focus on its real-time interfacing capabilities. We
create external servers to make the data available on through
the help of sample codes in SpineCreator.

II. BACKGROUND

A. Artificial Neural Networks and their real world applica-
tions

Artificial Neural Networks are a particular set of Machine
Learning models which postulate the neuron structure to be a
simple function approximator of the form

o = f(W ∗ x+ b) (1)

Which learns its weights W using the famous backpropaga-
tion rule. Although this seems to be a very model-based ap-
proach, ANNs are proven to be effective in solving problems in
almost every industry ranging from Medical Imaging models

to Stock market trading to Weather prediction, etc. Researchers
have also made custom models suit specific purposes based on
top of Artificial Neural Networks. For example Graph Neural
Networks for Protein Interface prediction [3], Convolutional
Neural Networks for Image Models [4], Recurrent Networks
for Text and Speech based data [5].

B. Spiking Neural Networks and their real-world applications
Recent work in showing the real-time interfacing advantages

of Spiking Neural Network like [1] has demonstrated the
advantages of Spiking Neural Networks. They are more power-
efficient as well as allow for faster decision making compared
to artificial neural networks. Artificial Neural Networks can
be made faster with the use of Specialised hardware such as
GPU, TPU [6] but these also are very power-hungry reducing
run-time of systems with limited power supply. The response
time of SNNs is almost close to zero which for example allows
for faster manoeuvring in drones.

C. SpineCreator
SpineCreator is a GUI based software to build Neural

Network Models. It has multiple panes - network editor,
experiment editor, component editor and also two panes
to observe the network and the final results (plots using
OpenGL). Network editor allows a user to add components
e.g. neural bodies, synaptic connections, spike sources. It also
allows for editing constant parameters that are defined in
the component editor. The component editor allows editing
equations, adding state variables, constant parameters, etc.
Finally, the experiment editor allows for editing the inputs,
outputs, etc.

D. Izhikevich based Neuron model
Reference [7]. The model is represented by two state

variables u(t) and v(t). v(t) represent the membrane potential
and u(t) is the recovery variable. It only depends on four
parameters a, b, c, d.
dv(t)

dt
= 0.04v2 + 5v(t) + 140− u(t) + Idc − Isyn(t) (2)

du(t)

dt
= a(bv(t)− u(t)) (3)

If v(t) > 30, then (4)

v(t)← c;u(t)← u(t) + d (5)



Fig. 1: The LGN model as used in [8]

E. Lateral Geniculate Nucleus

The LGN (in Fig. 1) is a body of neurons which helps in
relaying and processing information from the optic nerve to
the occipital lobe. It lies in the thalamic nerve and is one of
the major components of the visual pathway. In particular, we
take a look at the ventral LGN model. We formulate the LGN
as formulated in [8] we three groups of neuron bodies - TCR
(Thalamo Coritical Relay Cells), IN (Thalamic interneurons)
and TRN (Thalamic Reticular Neurons). The TCR and IN
cells help in relaying information from the retinal axons to the
visual cortex. The TRN primarily plays a role of feedback from
the visual cortex to the TCR and IN cells which comprise of a
majority of excitatory synapses. In the experiments mentioned
in this paper, we only test the TCR cells.

F. Dynamic Vision Sensor E-retina

Dynamic Vision Sensor E-retina [9] is very much like the
human retina which transmits local pixel level changes at the
time of occurrence. Its perfect for real time monitoring with
Spiking Neuron Models unlike traditional Artificial Neural
Network models. It transmits visual spikes. A higher rate of
spikes would be equivalent to higher current in the retinal
axon. Current is what we feed into the Izhikevich model
based neurons. The DVS plays a similar role as the retinal
cells rods and cones of transmitting visual light into electrical
signals which can be processed by neuronal bodies. The
electrical signals that are passed through the optic nerve are
similarly passed into the model on SpineCreator through a
network server that is created through sample codes available
in SpineCreator’s repository. Fig. 2 shows how the sensor
looks like. Fig. 3 shows how a particular instant the DVS
might be spiking. Fig. 4 shows the spiking a particular sensor
in the DVS Camera and how it may have been spiking. For
a complete description, the DVS can be thought of to be

Fig. 2: The DVS E-retina sensor

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
X

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
DVS Area - 19x19 at a particular instant

Fig. 3: Spiking at
an instant in DVS

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

60

40

20

0

20

M
em

br
an

e 
Po

te
nt

ia
l (

m
V)

Spiking activity

Fig. 4: Spiking
Activity v
s timesteps

capturing a 3-dimensional recording. The front 2D face of
which is represented by the Fig. 3 and the z-axis looks like
Fig. 4 for every sensor in the DVS area

III. RELATED WORK

Spiking Neural Networks have shown a lot of promise
in their real time interfacing applications with customized
hardware because of their low latency, low computational
overhead and low power design. Researchers have even shown
their applications on edge devices, on which even Artificial
Neural Networks have shown very less promise due to their
high computational load. [1] showed that with customized
neuromorphic hardware on a drone using Mixed - Analog
and Digital Signal design it’s possible to navigate a drone
with Dynamic Vision Sensor based inputs with a very fast
reaction time. [10] showed that using simple biologically
inspired dynamics using Spiking Neural Networks one can
design a control algorithm so as to control a prosthetic arm
using Brain Computer Interface. Their design was tested with
a rhesus monkey with the control algorithm using a 2000
Spiking Neural Network in Matlab. Similarly, using the help
of a Neural Engineering framework [11] showed that using a



0 45 90 135 180 225 270
Time	(ms)

-10

0

10

20

30

40

V_
m
	()

Population_V_m_log.bin

Fig. 5: Output Vm of the two neurons corre-
sponding to V in in baseline

Kalman filter based approach for transforming Spiking Neural
Networks for usage in Brain Machine Interface. Reference
[12] explored learning dynamics of computer vision using
event based sensors using a synaptic plasticity based rule.
Their complete experiments were performed on SpiNNaker
[13]. Reference [14] made use of Resistive Random Access
Memory for implementation of low latency spikes of a spiking
neural network followed by brain computer interface to for
neural prosthetic application. Their online learning algorithm
is inspired by Spike Timing Dependent plasticity. Reference
[15] showed a novel Spiking Neural Network based Classifica-
tion algorithm implemented on a GP-GPU platform. As their
learning algorithm they use NormAD approximate gradient
descent based supervised learning algorithm.

IV. METHODS

In this section we describe our methods to create the
external server, pre-processing of the data and the neural
networks on which we test the methodology.

A. Network Server

The network server is created by sample codes available
in SpineCreator in Octave. The complete communication with
the network server can be divided into five steps:-

1) Starting the local Network server
2) Add data to the context object. Also define cleanup

objects.
3) Query the current state of the network server. This tells

if the network server has been contacted by an external
source for data.

4) Get data from the local network server, if the external
source sending in data is sending any.

5) Stop the local network server.
Configuring SpineCreator to receive external input from this
local server is fairly simply and just requires setting the
external input option in the inputs section in the Experiment

Fig. 6: Input Vm to the two neurons in baseline.

200 400 600 800 1000
Timestep (ms)

2

4

6

8

10

12

14

Cu
rre

nt
 (p

A)

Proportional Current v/s Timestamp fed into Model Neurons

Fig. 7: Example of Analog current converted
through Eq. 8

tab. The port numbers should be carefully matched while
setting up the experiment in the Experiments tab and while
running the sample scripts because if the port numbers will
not match there will be no ’handshake’. The exact definitions
of handshake and data sending are defined in a file named
protocol.txt in SpineCreator’s repository.

B. Establishing a Baseline

To establish a baseline we run the sample example given in
SpineCreator’s repository. The sample defines a neural body
of two LIF neurons with a state variable Vm and τm.

dVm
dt

=
−(Vm + Vin)

τm
(6)

Here, V in is the external input voltage to the two LIF neu-
rons. The parameter τm is set to 30ms. Two input sine waves
of frequency with different amplitudes are passed in. The input
and output are shown in Fig. 6 and Fig. 5 respectively.



0 150 300 450 600 750 900
Time	(ms)

0

10

20

30

40

50

60

70

In
de
x

TCR_v_log.bin

Fig. 8: Rasterplot of 80 TCR conductance based
neurons responding to current in Fig. 7

C. Conductance based Neurons

Based on the baseline from sample codes in SpineCreator,
we test a conductance based model similar to the model
postualted in [7] with the equations described in Related
Work subsection D. We use the same sample inputs as used
in the baseline. To our surprise, we find no response from
SpineCreator whatsoever. The experiment seems to be stuck
at 0% progress and results in an error. So we instead feed
in through the Time Varying Input. We take special care in
changing no values from the external recorded DVS Input. So
we convert the DVS Input spikes into an analog current using
the following formula:

I ∝ Numberofspikes

WindowLength
(7)

I = k
Numberofspikes

WindowLength
(8)

For simplicity purposes, we assume k=1. A sample input is
show in Fig. 7. The parameters and equations for the model
are as follows:
dv(t)

dt
= 0.04v(t)2 + 5v(t) + 140− u(t) + Idc + T syn (9)

du(t)

dt
= a(bv(t)− u(t)) (10)

Isyn = Iampa + Igaba (11)

On condition: v(t) > V peak

v(t) := c (12)

u(t) := u(t) + d (13)

We monitor the output v(t, which is a state variable
here. Iampa and Igaba are input currents here. For simplicity
purposes, Igaba is given a constant value of 1pA but Iampa is
given value from the Analog current formula defined in Eq.

0 150 300 450 600 750 900
Time	(ms)

-60

-45

-30

-15

0

15

v	
()

TCR_v_log.bin

Fig. 9: Response Voltage log of index 0 neuron
to current in Fig. 7

8 with k=1. We assume V peak to be 30mV. Table I defines
the values of the other parameters.

Parameter Value
a 0.02
b 0.2
c -65
d 6

Vpeak 30
Idc 5

vinitial value -65
uinitial value -13

TABLE I: Parameters of Conductance based
neurons experiment

V. DISCUSSION

A. Baseline

For the baselines, through the external server we often see
that the total experiment run time is often 10x-100x than the
experiment times. For e.g. if the experiment is run for 0.3s, the
total run-time of the experiment would be somewhere in the
range of 3seconds - 30 seconds. This may vary from system to
system. If the external input is replaced with a constant input
to the network, the experiment run-time would be the same as
the experiment simulation time.

B. Conductance based neurons

Interestingly we see no response whatsoever through the
network server. This could potentially be due to the double
differential nature of the Conductance based networks. So we
instead feed in the network with Time varying input defined
according to the formula defined in Equation 8.

As expected we see that the TCR neurons respond exactly
as expected. The spiking activity is higher when the input
current is higher. It can also be observed through the voltage



plots that the frequency of an individual neuron firing is also
higher when the current is higher. It should be noted that the
depicted voltage response, rasterplot and the analog current
is only one of the multiple runs performed to confirm the
behavior.

VI. CONCLUSION AND FUTURE WORK

We test the real-time interfacing capabilities of SpineCreator
and show that whereas it’s possible to manually feed in values,
going by the network server approach there is sometimes a
bit of a ‘lag’ in communication. We show the results if the
bug is resolved and confirm the hypothesized behavior of
Conductance based Izhikevich Neurons to DVS E-retina Inputs
by a novel method of converting the input spikes into Analog
current.

The next steps would be to test on the complete LGN
model and resolution of the network server bug that currently
limits the complete real time interfacing of the model in
SpineCreator.

ACKNOWLEDGMENT

I would like to thank my supervisor, Dr. Basabdatta Sen
Bhattacharya for their valuable time, patience and expertise
during this project. Even though mentoring so many students,
there was never a time where I was denied time. In fact, I
was even told that unplanned meetings would be ok. I would
also like to thank the SpineCreator team especially Sebastian
James for the invaluable documentation provided. Even though
SpineCreator is a software meant to be for Spiking Neural
Network research, I actually got myself learning a few net-
working concepts here and there! I would also like to thank
Aditya Ahuja for helping me figure our SpineCreator a bit
initially and getting me upto speed with it as we started with
the project a bit late (almost half the semester in).

REFERENCES

[1] Moritz B. Milde, Hermann Blum, Alexander Dietmüller, Dora Sum-
islawska, Jörg Conradt, Giacomo Indiveri, and Yulia Sandamirskaya.
Obstacle avoidance and target acquisition for robot navigation using a
mixed signal analog/digital neuromorphic processing system. Frontiers
in Neurorobotics, 11:28, 2017.

[2] A. J. Cope, P. Richmond, S. S. James, K. Gurney, and D. J. Allerton.
Spinecreator: a graphical user interface for the creation of layered neural
models. Neuroinformatics, 15(1):25–40, Jan 2017.

[3] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein
interface prediction using graph convolutional networks. In Proceedings
of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pages 6533–6542, USA, 2017. Curran Associates Inc.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[6] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen

Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. SIGARCH Comput.
Archit. News, 45(2):1–12, June 2017.

[7] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions
on Neural Networks, 14(6):1569–1572, Nov 2003.

[8] Basabdatta Sen-Bhattacharya, Teresa Serrano-Gotarredona, Lorinc Bal-
assa, Akash Bhattacharya, Alan B. Stokes, Andrew Rowley, Indar
Sugiarto, and Steve Furber. A spiking neural network model of the lateral
geniculate nucleus on the spinnaker machine. Frontiers in Neuroscience,
11:454, 2017.

[9] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck. Retinomorphic event-based vision sensors: Bioinspired cameras
with spiking output. Proceedings of the IEEE, 102(10):1470–1484, Oct
2014.

[10] Julie Dethier, Paul Nuyujukian, Chris Eliasmith, Terrence C. Stewart,
Shauki A. Elasaad, Krishna V Shenoy, and Kwabena A Boahen. A brain-
machine interface operating with a real-time spiking neural network
control algorithm. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 24, pages 2213–2221. Curran Associates,
Inc., 2011.

[11] Julie Dethier, Paul Nuyujukian, Stephen I Ryu, Krishna V Shenoy,
and Kwabena Boahen. Design and validation of a real-time spiking-
neural-network decoder for brain–machine interfaces. Journal of Neural
Engineering, 10(3):036008, apr 2013.

[12] Michael Hopkins, Garibaldi Garcı́a, Petrut, Bogdan, and Steve Furber.
Spiking neural networks for computer vision. Interface Focus,
8:20180007, 08 2018.

[13] Javier Navaridas, Mikel Luján, Luis A. Plana, Steve Temple, and
Steve B. Furber. Spinnaker. Parallel Comput., 45(C):49–66, June 2015.

[14] Thilo Werner, Elisa Vianello, Olivier Bichler, Daniele Garbin, Daniel
Cattaert, Blaise Yvert, Barbara De Salvo, and Luca Perniola. Spiking
neural networks based on oxram synapses for real-time unsupervised
spike sorting. Frontiers in Neuroscience, 10:474, 2016.

[15] Shruti R. Kulkarni, John M. Alexiades, and Bipin Rajendran. Learning
and real-time classification of hand-written digits with spiking neural
networks, 2017.


